Introduction to molecular dynamics

nano101 Lectures – Network for Computational Nanotechnology

Ale Strachan

strachan@purdue.edu School of Materials Engineering & Birck Nanotechnology Center Purdue University West Lafayette, Indiana USA

Predictive science & materials modeling Predict materials performance from first principles Design and optimize new materials, understand their behavior under conditions where experiments are difficult to perform lifetime Time **Components** second Mesos microsec **Molecular dynamics** nanosec. Quantum Mechanics picosec. femtosec. Length micron nanometer mm NANOHUB Ale Strachan – Introduction to MD simulations 2

Materials are everywhere

Structural materials http://www.boeing.com/commercial/787family/

Pharmaceuticals

Kwong, Kauffman, Hurter & Mueller Nature Biotechnology, 29, 993 (2011)

Nanoelectronics "The High-k Solution", Bohr, Chau, Ghani, and Mistry <u>http://www.spectrum.ieee.org/oct07/5553</u>

Fundamental theory

האה

NANOHUB

- Late 1500's to early 1800's: Classical mechanics Galileo, Newton, Legendre, Hamilton, ...
- Second half of 1800's: Statistical mechanics Gibbs, Maxwell, Boltzmann, ...
- 1905-1926: Quantum mechanics
 Plank, Bohr, Dirac, Schrödinger, Dirac, ...

Ale Strachan – Introduction to MD simulations

5

Predictive simulations

- 1957: Molecular dynamics Alder and Wainwright
- 1964-1965: Density functional theory Kohn, Hohenberg, Sham: density functional theory
- 1980's-present: Predictive simulations
 Extensions to classical mechanics
 Accurate approximations for DFT
 Accurate interatomic potentials for large-scale MD

Basic physics & approximations

Dynamics of atoms: Classical (Newton's) mechanics

$$F_i = m_i a_i$$

Force between atoms originates from the electronic structure Time independent Schrodinger Eq.

$$H\psi = E\psi$$

Electronic and atomic processes

Initial condition $\left\{ R_{i} \right\} \quad \left\{ V_{i} \right\}$

Time evolution

$$R_i = V_i$$
$$\dot{V}_i = \frac{F_i}{M_i}$$

Energy & forces

 $H\psi = E\psi$

$$F_i = -\nabla_{R_i} E\left(\left\{R_i\right\}\right)$$

Molecular dynamics

Initial conditions

$$\{R_i\} \ \{V_i\} \}$$
Compute energy & forces

$$H\psi = E\psi$$

$$F_i = -\nabla_{R_i} E(\{R_i\})$$
Integrate Eqs. of Motion

$$R_i(t) \rightarrow R_i(t + \Delta t)$$

$$V_i(t) \rightarrow V_i(t + \Delta t)$$

So ... what is MD?

Follow the dynamics (motion) of all the atoms in your material

Numerically solve classical equations of motion (Newton's):

Approximation

$$\vec{F}_i = m_i \vec{A}_i$$
 or $\begin{cases} \vec{R}_i = V_i \\ \dot{\vec{V}}_i = \frac{\vec{F}_i}{M_i} \end{cases}$

Forces on atoms come from the interaction with other atoms:

$$\vec{F}_i = -\vec{\nabla}_{R_i} V(\{R_j\}) \quad \longleftarrow \begin{array}{l} \text{Approximated} \\ \text{(in almost all cases)} \end{array}$$

Total potential energy

- Eigenvalue in the time-independent Schrodinger Eq.
- An empirical potential energy function

Predicting the future with MD

Verlet algorithm: Taylor expansion of positions with time

$$R_{i}(t + \Delta t) = R_{i}(t) + \dot{R}_{i}(t)\Delta t + \frac{1}{2}\ddot{R}_{i}(t)\Delta t^{2} + \frac{1}{6}\ddot{R}_{i}(t)\Delta t^{3} + O(\Delta t^{4})$$
$$R_{i}(t - \Delta t) = R_{i}(t) - \dot{R}_{i}(t)\Delta t + \frac{1}{2}\ddot{R}_{i}(t)\Delta t^{2} - \frac{1}{6}\ddot{R}_{i}(t)\Delta t^{3} + O(\Delta t^{4})$$

Sum two equations:

PURDUE

NANOHUB

$$R_{i}\left(t+\Delta t\right) = 2R_{i}\left(t\right) - R_{i}\left(t-\Delta t\right) + \ddot{R}_{i}\left(t\right)\Delta t^{2} + O\left(\Delta t^{4}\right)$$

Simple MD simulations

Nanoelectronics: electrometallization cells

- Resistance switching devices
 - Creation and dissolution of conductive metallic bridges
 - Ultrafast switching & miniaturization to the nanoscale

NANOHUB

PURDUE

Nano-engineering to control thermal transport

Keng-Hua Lin and A. Strachan, Physical Review B, 87, 115302 (2013).

NANOHUB

PURDUE

Role of size and interfaces

Role of superlattice period

- Decreasing SL period reduced thermal conductivity up to a minimum size
- Further reduction increases k (phonons see material as homogeneous)

Role of specimen length

- Reducing specimen length affects the thin film SL's more dramatically
- For small specimens thin film SL's can have lower thermal conductivity of their nanowire counterparts

Keng-Hua Lin and A. Strachan, Physical Review B, 87, 115302 (2013).

Thermal transport at the nanoscale

Corrugated Si nanowires

• Conductance smaller than straight wires with inner core diameter

PURDUE

NANOHUB

S. Sullivan, K. Lin, S. Avdoshenko, and A.S. Applied Physics Letters, 103 243107 (2013).

Nano-engineering for mechanical response

Deformation of a polycrystalline metal

Platinum yield stress vs. grain size

Hojin Kim and A. Strachan, unpublished

NANOHUB PURDUE

Engineering curvature in graphene

Li, Koslowski, Strachan, Nano Lett. (2014)

PURDUE

Nano-engineering energetic materials

Highly reactive composite materials

Attractive properties

- High-energy density
- Significant ability to tune properties via micronano-structure
- Potential for multifunctionalty

Al

Co-Pls: Son, Cuitiño, Mukasyan

Ni

NANOHUB

Challenges

- Role of nano- and micro-structure on sensitivity, exorthemicity under different insults
- Processing routes to tune performance

Nanostructure role on chemical reactions

Nanolaminates

Free surfaces

Reactions in bulk nanolaminates

- Rapid heating of samples to ignition temperature (900 to 1400 K)
- Constant enthalpy simulations of chemical reaction
- Ni/Al EAM potential from Mishin et al. Phil. Mag. 89, 3245 (2009)

Cherukara, Guda & Strachan, Phys. Rev. B (2012)

NANOHUB

Role of extended defects

Role of extended free-volume defects

Ale Strachan – Introduction to MD simulations

2000

1200

Polymer composite projects

NSF: cyber-enabled predictive models for polymer nanocomposites: multiresolution simulations and experiments

•Ultimate mechanical properties of nanocomposites
•Poly-imides and PMMA with CNTs and graphne

Boeing – Purdue: atoms to aircraft

Prediction of onset of irreversible deformation and damage propagation in epoxy formulations
Continuous carbon fiber reinforced composites

Co-PIs: Pipes, Koslowski, Raman, Caruthers

www.newairplane.com

Molecular structure of thermoset polymers

Create simulation cell with desired number of epoxy and curing agent molecules MD procedure to mimic the curing process

Properties vs. conversion degree

Rate effects in polymer properties

BGEBA/3,3DDS

Chunyu Li et al. Polymer (2012)

Processing and properties of thin films

5

Polymer/graphite nanocomposites

C. Li, A. Browning, S. Christensen, and A. Strachan, Composites Part A (2012)

Multiscale, multiphysics w/ quantified uncertainties

Uncertainty propagation

Additional resources online

- nanoHUB topics page on MD
 - <u>https://nanohub.org/topics/MD</u>
- Short and full courses on predictive simulations and MD
 - nanoHUB-U course "Atoms to Materials": <u>https://nanohub.org/groups/u</u>
 - Lecture series on MD simulations: <u>http://nanohub.org/resources/5838</u>
- Online MD simulations
 - nanoMATERIALS simulation tool: <u>https://nanohub.org/tools/matsimtk</u>
 - PolymerModeler: https://nanohub.org/tools/polymod
 - nanoMATERIALS nanoscale heat transport: <u>https://nanohub.org/tools/nmstthermal</u>

Online simulations at nanoHUB

Ale Strachan – Introduction to MD simulations

Thanks

PURDUE

DoE-BES

NANOHUB

