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NEEDS compact model development 
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• A list of compact models for 
nanoscale devices available to 
download. 
 

• Total number of models till 
date: 20 
 

• Models from NEEDS member 
universities: 12/20 (60%) 



NEEDS model release history 
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Upcoming models 
 

o Thermoelectric device 
o Phase change memory 
o Steep Subthreshold 

FETs 
o NEMS Relay 
o Optical modulator 
o 45 nm CMOS SOI RF 

MVS 
1.0.0 

Data current as of 08/28/2015  



NEEDS compact models: top user 
downloads  
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This presentation focuses on 

I. MVS model 
• Nanotransistor basics 
• Model formulation 
• Experimental verification 
• Mathematical issues 

 

II. Model deployment on 
nanoHUB 
• Process and 

requirements 
• Current status  
• Future goals 
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PART I 
MIT Virtual Source Model For 
Nanotransistors 



Textbook MOSFET I-V theory 
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gate-voltage controlled  
current source 

a.k.a. saturation 

gate-voltage controlled 
Resistor 

a.k.a. linear region Vdsat 



What is MVS model? 
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MIT Virtual Source (MVS) 
nanotransistor model gives 
currents and charges as 
functions of terminal 
voltages. 

 

 Currents 
Id = f(Vg,Vd,Vs,Vb) 
Ig = Ib = 0 

Charges 
Qs = f1(Vg,Vd,Vs,Vb) 
Qd = f2(Vg,Vd,Vs,Vb) 
Qb = f3(Vg,Vd,Vs,Vb) 
Qg = -(Qs+Qd+Qb) 
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Charge at VS Velocity at VS 

Empirical 
function 

 10 fitting parameters. 
  most of the parameters are physical 

and can easily be obtained through 
device characterization. 

  describes quasi-ballistic silicon, 
III-V and graphene devices. 

Leff x 

EC 

x0 0 

Vg
 

Vd’ Vs’ 

vx0 

MVS model: I-V characteristics 



MVS 1.0.0 model formulation 
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1) 

2) 

3) 

4) 

Only 10 parameters in this 
model: 



Charge partitioning/ Dynamic model 
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o Charge partitioning tells us the 
charge associated with the various 
terminals in the transistor. 
 

o Transient analysis needs charges 
and inter-nodal capacitances. 
 

o In MVS, dynamic model is 
obtained self-consistently with the 
static transport model  no 
additional fitting parameters. 
 

Qs Qd 

Qg 

QB 



References for MVS model equations 
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1. A. Khakifirooz et al., “A simple semi-empirical short-channel 
MOSFET current-voltage model continuous across all regions of 
operation and employing only physical parameters,” IEEE Trans. 
Electron Devices, vol. 56, no. 8, July 2009. 

2.  L. Wei et al., “ Virtual-source-based self-consistent current and 
charge FET models: from ballistic to drift-diffusion velocity-
saturation operation,” IEEE Trans. Electron Devices, vol. 59, no. 
5, May 2012. 

3.  S. Rakheja and D. Antoniadis, “MVS 1.0.1 Nanotransistor Model 
(Silicon),” https://nanohub.org/resources/19684 (Nov. 2013) 

https://nanohub.org/resources/19684


MVS model verification with 
experiments 
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(MIT) Test chip fabricated 
using CVD grown MoS2 

Si ETSOI 
(IBM) 

Graphene 
(IBM, Columbia, MIT) 

III-V HEMT 
(Intel & MIT) 



Extremely thin silicon-on-insulator 
(SOI) (IBM, 2014) 
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Leff = 30 nm 

Output characteristics Transfer characteristics 

Symbols  experiment 
Solid lines  model 



FinFET CMOS technology (Intel, 2014) 
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Output characteristics Transfer characteristics 

Symbols  experiment 
Solid lines  model 



Ambipolar graphene RF FETs  
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Output characteristics Current gain versus freq. 

Symbols  experiment 
Solid lines  model 

Epitaxial GFETs fabricated at IBM, 2013. 



Mathematical issues in writing 
compact models: “smoothness” is key 
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Need for smoothness 
in model functions and 

their slopes 

DC/transient/AC 
analysis of circuits  Small-signal resistance 

/capacitance/inductance  

Physical systems are 
smooth at fine enough 
resolution 

“A quick circuit simulation primer” https://nanohub.org/resources/20610 



Example of non-smooth functions 
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abs(x) 

x -1 

+1 

x 

sign(x) 

∂(abs(x))/∂x 

x -1 

+1 



Problem areas in MVS model 
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Vgs = 1V 
ΔVx (grid) = 10-4V 

Discontinuity Discontinuity 

Third derivative of current  Capacitance versus Vds 



PART II 
MVS model deployment on 
nanoHUB 



MVS 1.0.1 package release snapshot 
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Model release 
components 

Version # 
Download bundle Abstract 
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1. MATLAB-related 

i. Model implementation 

ii. Model exerciser 

iii. Numerical parameter extractor 

2. Verilog-related 

i. Model implementation 

ii. Test-benches for simple circuits 

3. Experimental data for model calibration 
4. Model manual 
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MVS 1.0.1 release package contents 
on nanoHUB: 1/2 



MVS 1.0.0 release package contents 
on nanoHUB: 2/2 
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5. Update log (when a new version is released) 

6. License agreement 

 
https://nanohub.org/publications/15 

Wiki for model-release checklist: 
NEEDS  For Developers  First item on Resources 

Link to the model on nanohub: 

https://nanohub.org/resources/19684


Quick checklist for model release 
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Component Associated files and/or requirements 

MATLAB • Model file 
Model exerciser 

• Parameter extraction (analytical/non-linear) 
• Readme file 

Verilog-A • Model file 
• SPECTRE/HSPICE netlists for simple circuits 

Readme file 
Experimental 
data 

• Readme file for data format and references 

Model manual • Explaining all of the model equations 
• Simulation results 
• Extraction methodology 
• Proper references 

CMC license 
agreement 
 
Update log  
(if needed) 

+ 



MVS-related seminars on nanoHUB 
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https://nanohub.org/resources/21712 

https://nanohub.org/resources/20139 

o NEEDS Compact Model Release –  
Lessons Learned from MVS 1.0.0 

o The MVS Nanotransistor Model:  
A Case Study in Compact Modeling 

Steps to follow 
when releasing 
your own 
compact model 

Dealing with 
mathematical 
issues in compact 
models 



MVS model evolution 
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MIT Virtual 
Source (MVS) 

MVS 1.0.0 

Aug. 2013 

MVS 1.0.1 

MVS 1.1.0 

Nov. 2013 

Aug. 2015 

MVS 1.2.0 MVS 2.0.0 

Aug. 2015 Aug. 2015 

o Targeted toward 
III-V HEMTs.  

o Core formulation 
is same as MVS 
1.1.0 

o More physical 
o /less empiricism 

than previous 
versions. 

o Does not have 
dynamic model. 



MVS model evolution 
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MIT Virtual 
Source (MVS) 

MVS 1.0.0 

Aug. 2013 

MVS 1.0.1 

MVS 1.1.0 

Nov. 2013 

Aug. 2015 

MVS 1.2.0 MVS 2.0.0 

Aug. 2015 Aug. 2015 

o Targeted toward 
III-V HEMTs.  

o Core formulation 
is same as MVS 
1.1.0 

Original MVS model 
[2009, 2012]  
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MVS 1.0.0 
Aug. 2013 

  

MVS 1.0.1 
Nov. 2013 

  Issues: 
o Unused variables 
o Hidden states 
o Parameter range 
o Indentation 

Issues: 
o Capacitance 

discontinuity  
o Better ways 

needed to fix 
some other 
numerical issues 
in VA  

MVS 1.1.0 
Aug. 2015 

o While we fixed 
some existing bugs 
in MVS 1.0.1, the 
mathematical 
issues still exist. 

MVS 1.0.0 model evolution 



MVS model evolution 
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MIT Virtual 
Source (MVS) 

MVS 1.0.0 

Aug. 2013 

MVS 1.0.1 

MVS 1.1.0 

Nov. 2013 

Aug. 2015 

MVS 1.2.0 MVS 2.0.0 

Aug. 2015 Aug. 2015 

o Targeted toward 
III-V HEMTs.  

o Core formulation 
is same as MVS 
1.1.0 

o More physical 
o /less empiricism 

than previous 
versions. 

o Does not have 
dynamic model. 

Based on Landauer transmission 
theory 
 
Accounts for non-equilibrium 
conditions in the channel 
 
Non-linearity of access region 
resistances 



MVS 2.0.0 
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MVS 2.0.0 provides two implementations: 
 
o For III-V HEMTs which have degeneracy and gm-reduction 

under high drain current 
 
o For Si ETSOI devices which operate under non degeneracy 

and do not have any gm-reduction. 
 
MVS 2.0.0 provides only static transport model.  

https://nanohub.org/publications/74 Contains links to all other 
versions of MVS 



shaloo.rakhej@nyu.edu 
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https://nanohub.org/publications/74 

Links to all MVS versions 
available on the same page 



InGaAs HEMTs with MVS 2.0.0 
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PR

Buffer = In0.52Al0.48As (~400 nm)

Channel = In0.53Ga0.47As ( 3 nm )

Barrier = In0.52Al0.48As ( 4 or 10 nm )

Substrate = InP (~300 nm)

Metal

S D

Etch stopper

Barrier

Channel

Buffer

tins

Oxide

tch

Gate

Cap Channel = In0.53Ga0.47As ( 2 nm )

Channel = In0.7Ga0.3As ( 8 nm )
Core    or InAs ( 5 nm )

tch = 
10 nm 

o Leff = [30, 40, 60, 
80, 130] nm 
 

o Fabricated at MIT, 
2009. 

I D
 (A

/µ
m

) 

Vds (V) 

ID (A/µm) 
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30 nm 

gm-degradation 



Key references for MVS 2.0.0 

o S. Rakheja, M. Lundstrom, D. Antoniadis, “An Improved Virtual-
Source-Based Transport Model for Quasi-Ballistic Transistors – 
Part I: Capturing Effects of Carrier Degeneracy, Drain-Bias 
Dependence of Gate Capacitance, and Non-linear Channel-
Access Resistance,” IEEE Transactions on Electron Devices, 
vol. 62, no. 9, pp. 2786-2793, Sep. 2015. 

 

o S. Rakheja, M. Lundstrom, D. Antoniadis, "An Improved Virtual-
Source-Based Transport Model for Quasi-Ballistic Transistors – 
Part II: Experimental Verification,” IEEE Transactions on 
Electron Devices, vol. 62, no. 9, pp. 2794-2801, Sep. 2015. 
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Summary- MVS nanotransistor 
models 
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o Two VS Models (MVS-1 and 2) provide a 
progression of approximation accuracy to the 
Transmission Model suitable for any FET structure. 

 
o Despite its simplicity MVS-1 provides a suitable tool 

for FET carrier transport benchmarking for 
technology assessment. 

 
o MVS-2 is based on physically sound charge-control 

and transport models to allow quantitative analysis of 
band-structure characteristics. 



MVS future plans 
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MIT Virtual 
Source (MVS) 

MVS 1.0.0 

Aug. 2013 

MVS 1.0.1 

MVS 1.1.0 

Nov. 2013 

Aug. 2015 

MVS 1.2.0 MVS 2.0.0 

Aug. 2015 Aug. 2015 

MVS 2.1.0 o Dynamic model 
 
o Current and capacitance 

discontinuity at Vds = 0V ? 

Discontinuity ? 
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