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INTRODUCTION 
The NEGF method was established in the 

1960’s through the classic work of Keldysh 
and others [1] using the methods of many-
body perturbation theory (MBPT) and this 
approach is widely used in the literature [2]. 
By contrast I have introduced a different 
approach starting with the one-electron 
Schrödinger equation [3, 4] which is used by 
many in the nanoelectronics community. In 
this talk I will try to answer the questions I 
often get regarding the relation between the 
two approaches and I thank the organizers of 
the IWCE for giving me this opportunity. 

 
SCHRÖDINGER TO NEGF 

Let me start by quickly outlining our 
approach following the discussion in [4]. We 
start from the usual time-independent 
Schrödinger equation and add two terms to it 
representing the outflow and inflow from the 
contact 

 

E {ψ } = [H ] {ψ } + [Σ] {ψ }

OUTFLOW
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These two terms arise from imposing open 
boundary conditions on the Schrödinger 
equation with an incident wave from the 
contact as shown in Chapters 8,9 of [3b]. Note 
the similarity of the additional terms here with 
those appearing in the Langevin equation used 
to describe Brownian motion. 
 
Using this modified Schrödinger equation (1), 
the wavefunction can be written as 
 

 
 ψ{ } = [EI − H − Σ] −1 {s}            (2) 
 
Since the inflow from multiple sources {s} are 
incoherent, one cannot superpose the resulting 
{ψ }’s and it is more convenient to work in 
terms of quantities like (superscript ‘+’ 
denotes conjugate transpose)   
 
    [Gn ] ~ {ψ }{ψ }+ , [Σin ] ~ {s} {s}+  

which can be superposed. This leads to the 
NEGF equations as we will now show. 
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giving us the second NEGF equation 

 Gn = GR Σin GA   (4) 

Though we have changed the notation, writing 
 Σ  for  ΣR , Gn

for − iG
<  , Σin for − iΣ

<

 
Eqs.(3,4) are essentially the same as Eqs.(75-
77) in Keldysh (1965), which is one of the 
seminal founding papers on the NEGF method 
that obtained these equations using MBPT. 
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In modern applications, the terminal currents 
are calculated by supplementing the NEGF 
equations with the current operator 
 

     
I op = ΣGn −GnΣ+

i!
+ ΣinGA −GRΣin

i!    (5) 
 
We will not discuss the current operator 
further in this talk, but this too can be obtained 
from the one-electron picture [3a, see 
Eq.(8.5.7)], though  it is commonly obtained 
using a many-body formalism [2, see 
Eq.(16.7)]. Also, for simplicity we will only 
discuss the time-independent version here, a 
similar derivation could be used for the time-
dependent version too [3b, see Appendix]. 
 

ONE ELECTRON OR MANY-BODY? 
 
How could we obtain these 
results using elementary 
arguments, without 
invoking MBPT? 
 
We are considering a conductor with a 
Hamiltonian H that describes the quasi-
particle dynamics around the equilibrium 
state, along with a suitable self-consistent 
potential U that approximately accounts for 
electron-electron interactions. This approach is 
widely used and the subtle many-body issues 
associated with the proper choice of U and its 
limitations have been discussed extensively. 
 
Here, however, we are concerned more about 
the non-Hermitian parts described by the self-
energy and inscattering functions  
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The components labeled 1, 2 arise from the 
contacts, while the component labeled 0 arises 
from the interactions of electrons with the 
surroundings which can be split into two parts: 
one from rigid scatterers with no internal 
degrees of freedom, and a many-body part that 
couples an individual electron into many 
degrees of freedom. We have labeled this part 
as “diss” since it usually involves the 
dissipation of energy, but this is not essential. 
 
It is only this last component that requires 
many-body theory. The contact components as 
well as the rigid interaction can be treated 
straightforwardly within a one-electron 
picture. Indeed even the “diss” component can 
be treated within a one-electron picture in the 
Born approximation, though it requires subtle 
arguments related  to the exclusion principle 
[3b, Chapter 10]. 
 
So why do most serious treatments of 
transport start from many-body theory? It is 
probably because electron-electron interaction 
is generally considered an essential factor 
without which it is meaningless even to start a 
discussion about resistance. 

 
 
 
 
 
 

 
 
 
 
This “gut feeling” comes largely from a fact 
that we all learn as undergraduates, namely 
that when we turn on the switch and a light 
bulb turns on, it is not because an electron 
actually traveled from the switch to the bulb. 
That would take far too long. What travels is 
the signal, as one electron pushes the next one, 
which in turn pushes the next one and the 
signal travels close to the velocity of light. 
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It seems that a model describing current in 
terms of the flow of individual electrons 
would predict that signals will travel at the 
velocity of electrons, which is clearly wrong. 
Hence it would seem that such a theory cannot 
be correct even to zeroth order. 
 
Note, however, that to describe the 
propagation of transient signals we need a 
distributed transmission line model that 
includes not just R, but also an inductance L 
and a capacitance C as shown above. These 
quantities could include transport related 
corrections in small conductors, but are 
ordinarily determined primarily by 
magnetostatics and electrostatics [5]. The 
signal velocity, controlled largely by this L 
and C, can be well in excess of individual 
electron velocities, reflecting the collective 
process described above. However, the low 
frequency conduction properties are 
unaffected by L or C, and depend only on the 
dc resistance R that can usually be understood 
at least to first order in terms of the transport 
of individual electrons. Significant many-body 
corrections may be needed in special cases, 
but there is nothing fundamentally wrong at 
least in starting the discussion without these 
effects. 

AN EXAMPLE 
The origin of the resistance R lies in the loss 
of momentum rather than the loss of energy 
and this is evident if we plot the occupation of 
states (which reflects the electrochemical 
potential) inside a ballistic conductor with a 
single localized barrier U as shown below.  
 
         Interface       Barrier          Interface 
         Resistance    Resistance    Resistance 

 

 

 

 
The potential profile is calculated directly 
from the NEGF equations [4]  using different 
choices for the interaction term. The first plot 
is obtained with no interactions in the channel 
giving an oscillatory profile that can also be 
obtained from the scattering theory of 
coherent transport. 
 

 
 
 
 
 
 
 
 
 
 
 
Experimentally these coherent oscillations are 
seldom observed especially at room 
temperature [6] due to the incoherent 
interactions inside the channel. These 
interactions are difficult to include within the 
scattering theory of transport, but are 
straightforwardly included in the NEGF 
equations through a proper choice of the 
interaction term in the form 

Σ0 = D⊗GR , Σ0
in = D⊗Gn  

where through a proper choice of the tensor D 
we can include different types of elastic 
interactions. Two such examples are shown 
below, one including only phase-relaxing 
interactions, and another including interactions 
that relax both phase and momentum. 
 
Note that purely phase relaxing mechanisms 
destroy the coherent oscillations but do not 
introduce any additional resistance: the 
potential profile is still flat in the channel 
except at the barrier. But once we introduce 
momentum relaxation there is additional 
resistance in the channel as evidenced by the 
non-zero slope in the potential [7]. 
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The key point I am trying to make is that the 
fundamental cause of resistance is the loss of 
momentum : none of these calculations 
include any dissipative interactions. The drop 
in potential across the structure indicates a 
drop in the occupation of the states in the 
channel but does not imply any loss of energy 
or dissipation. The electrons in these regions 
have a highly non-equilibrium energy 
distribution and these hot electrons relax their 
excess energy elsewhere as they flow away, as 
discussed in Chapter 2 of [3a]. But this loss of 
energy can occur many microns away from the 
channel and gives no hint as to what caused 
the resistance in the first place. 
  

 “VERTICAL” FLOW 
But can we calculate the resistance accurately 
from a model that ignores energy relaxation 
within the channel? The answer depends on 
the problem at hand. We can understand the 
relevant issues at least intuitively with a 
simple circuit model. Each energy channel can 
be modeled as a series of resistors, while 
inelastic flow is represented by the “vertical” 
resistors connecting nodes from different 
energies as sketched below. 

 
 

 
 

 
 
If each energy channel has the same resistance 
profile then the vertical resistors carry no 
current since they connect nodes at the same 
potential. This is often the case in uniform 
conductors at low voltages, and so a model 
that ignores energy loss can be used to 
calculate resistance accurately, as long as 
momentum loss is modeled accurately for 
each energy cannel. 
 
But in a conductor with a barrier in the middle 
the lower energies conduct poorly compared 
to the higher ones causing electrons to absorb 
energy from the lattice on the left of the 
barrier thus cooling the lattice leading to a 
mesoscopic Peltier 
effect. Such effects 
too are readily 
included within the 
NEGF method, but 
it requires us to 
include energy 
relaxing processes [8]. 
 
Structures with non-identical contacts like p-n 
junctions provide even more striking examples 
of the potential importance of vertical flow.  
 
In short, inelastic processes may have a 
significant effect in specific problems 
especially at high bias. But it is reasonable at 
least to start a discussion of the physics of 
resistance without introducing inelastic 
interactions explicitly. 
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NEGF: OUR PERSPECTIVE 

With this in mind, I would argue that in 
discussing steady-state current flow, it makes 
sense to start from coherent transport 
described by Σ1,2 , then introduce rigid 
interactions Σ0  with different phase and 
momentum relaxing properties, and finally 
introduce Σ0  for dissipative processes as 
needed. Even this last process can be 
described in the Born approximation using a 
one-electron picture, with subtle arguments 
related to the exclusion principle.  
 
Note that this one-electron NEGF goes 
considerably beyond the scattering theory of 
transport which usually neglects interactions 
within the channel completely. Incoherence is 
commonly introduced in the scattering theory 
using an insightful observation due to Büttiker 
that dephasing processes essentially remove 
electrons from the channel and re-inject them 
just like real contacts and so one can include 
them phenomenologically by introducing 
conceptual contacts in the channel. This 
method is widely used in mesoscopic physics, 
but I am not aware of a convenient way to 
introduce pure phase relaxation without 
momentum relaxation if we wanted to. 
 
In the NEGF method it is straightforward to 
choose Σ0  so as to include arbitrary degrees of 
phase and momentum relaxation as we have 
seen. Indeed one could go further and 
introduce controlled amounts of other types of 
relaxation (spin for example) as well.  
 

BUT SHOULD WE CALL THIS NEGF? 
The answer to this question depends on which 
aspect of NEGF we consider fundamental:  
 
    A. Eqs.(3)-(5) or  
    B. Calculating the Σ ’s appearing in (3)-(5). 
 
For historical reasons, these two aspects, A 

and B, are often intertwined in our thinking, 
but they need not be.  Indeed these two aspects 
are completely distinct in the Boltzmann 
approach which is identified with the equation 
 

 

∂ f

∂t
+

ν .

∇f +


F.

∇ p f = Sop f  

 
and NOT with the evaluation of the scattering 
operator Sop which is analogous to the sigma’s 
in (3)-(5). Boltzmann himself was unaware of 
the Fermi’s golden rule commonly used 
nowadays to evaluate the Sop appearing in the 
equation bearing his name. 
 
It thus seems appropriate to regard aspect A  
as more fundamental, and call Eqs.(3)-(5) the 
NEGF equations irrespective of how they are 
derived.  
 

 “CONTACT-ING” SCHRÖDINGER  
In short, I feel that the scope and utility of 
Eqs.(3) - (4) transcends the MBPT-based 
approach originally used to derive it. It teaches 
us how to combine quantum dynamics with 
“contacts”, much as Boltzmann taught us how 
to combine classical dynamics with 
“contacts”, using the word “contacts” in a 
broad figurative sense to denote all kinds of 
irreversible processes. 
 
 The essence of NEGF is contained in Eqs.(3)-
(5), while the actual evaluation of the Σ ’s 
may well evolve as we look at more and more 
different types of problems. The original 
MBPT–based approach may or may not be the 
most suitable, even for problems involving 
electron-electron interactions. 
 
Above all we believe that by decoupling 
Eqs.(3)-(5) from the MBPT method originally 
used to derive them, we can make the NEGF 
method more transparent and accessible so 
that it can become a part of the standard 
training of physics and engineering students 
who need to apply it effectively to a wide 



 6 

variety of basic and applied problems that 
require “connecting contacts to the 
Schrödinger equation” [9]. 
 
Let me end by noting that the one-electron 
approach to NEGF is not just for students who 
lack the MBPT background.  Even advanced 
students could benefit from it, because the 
one-electron approach provides an intuitive 
feeling whose value cannot be overstated 
especially as we venture into new frontiers 
like spintronics involving the control of 
electrons at a more delicate level. As Feynman 
remarked in his famous Lectures on Physics, 
 

“ .. people .. say there is nothing which is 
not contained in the equations .. if I 
understand them mathematically inside out, 
I will understand the physics inside out. 
Only it doesn’t work that way .. A physical 
understanding is .. absolutely necessary for a 
physicist.” 
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