Please find the Video Tutorial at <a href="https://nanohub.org/resources/22447">https://nanohub.org/resources/22447</a>

## PhotonicVASEfit extracting optical constants of new materials by ellipsometry

FAQ INTRO TUTORIAL DEMO USING RESULTS

#### Ludmila J. Prokopeva,<sup>1,2</sup> You-Chia Chang,<sup>3</sup> and Alexander V. Kildishev<sup>1</sup>

<sup>1</sup> Purdue University, West Lafayette, IN, USA
<sup>2</sup> Novosibirsk State University, Novosibirsk, Russia
<sup>3</sup> University of Michigan, Ann Arbor, MI, USA



NSF MRSEC program DMR1120923 Materials Research Science and Engineering Center nanoHUB FAQ How do I ... ?

### FAQ: How do I ... ?

#### How do I launch simulation tools?

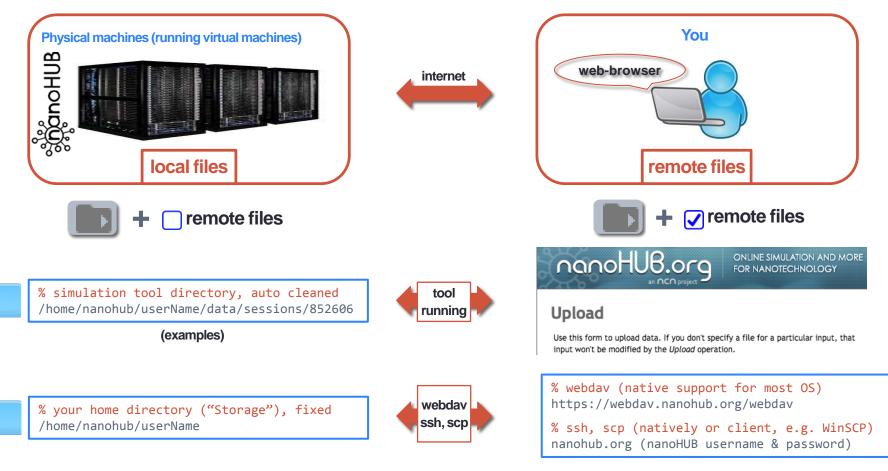
All you need is to open an account - it's free!

Go to tool page and press 'Launch Tool' button

#### https://nanohub.org/tools/photonicvasefit

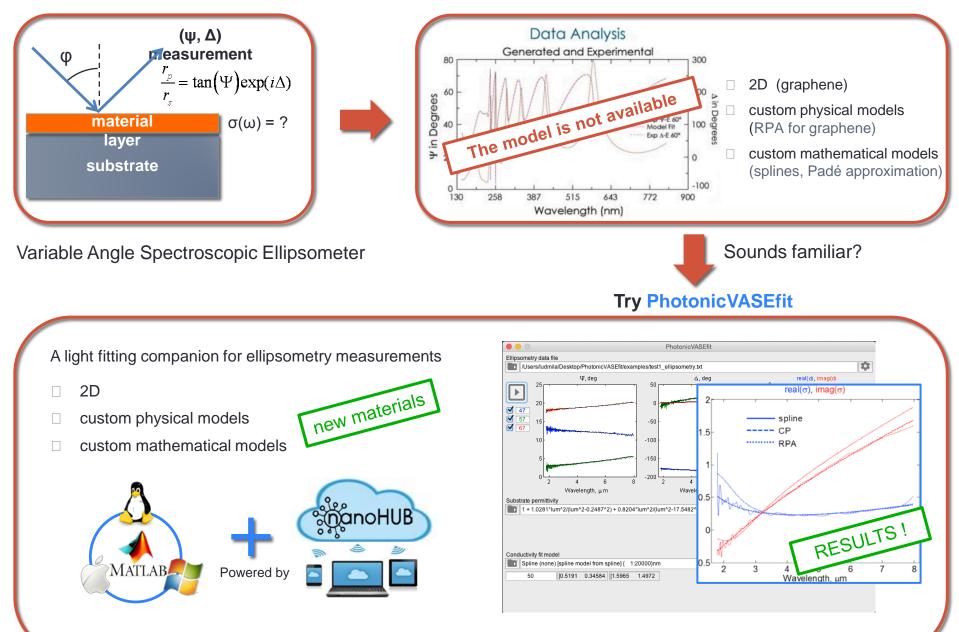
#### PhotonicVASEfit: VASE fitting tool

By Ludmila Prokopeva<sup>1</sup>, You-Chia Chang<sup>2</sup>, Alexander V. Kildishev (editor)<sup>3</sup> 1. Novosibirsk State University 2. University of Michigan 3. Purdue University


Retrieves optical constants of a material by fitting it to VASE (Variable Angle Spectroscopic Ellipsometry) data

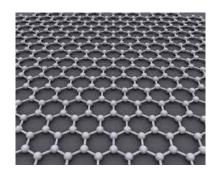
Launch Tool

Version 1.3.1 - published on 11 Jun 2015 doi:10.4231/D39Z90C98 cite this This tool is closed source. View All Supporting Documents


#### How do I upload (ellipsometry data) file to use it with the tool?

#### Understand file systems locations and directories




# **INTRODUCTION**

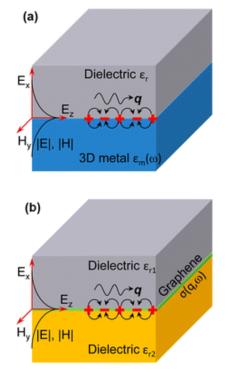
### **INTRO: WHY ANOTHER TOOL?**



Current functionality is limited to a 2D-layer on a substrate. More is under development: we've just started!

### **INTRO: GRAPHENE MODELS**




Graphene, a new optical material

- 2D material (atomic thickness)
- plasmonics
- tunable optical response, controlled by applied bias voltage

ſ

Low & Avouris, ACS Nano, 2014, 8 (2), 1086–1101

Fundamental model for relative surface conductivity ( $\sigma_r = \sigma/\sigma_0$ ) of graphene



$$\begin{aligned} \sigma_{\mathrm{RPA}}\left(\omega\right) &= \frac{8\iota}{\pi} \frac{\omega_T}{\omega + \iota\Gamma} \log \left[ 2\cosh\left(\frac{\omega_F}{2\omega_T}\right) \right] & \text{Intraband term} \\ \left(\text{Drude model}\right) \\ &+ \frac{4}{\iota\pi} \left(\omega + \iota\gamma\right) \int_{0}^{\infty} \frac{f(\omega')}{4\omega'^2 - \left(\omega + \iota\gamma\right)^2} d\omega' \\ \text{Random Phase Approximation (RPA)} & \text{Interband term} \\ \text{(not TD-friendly)} \\ \hline f\left(\omega\right) &= \sinh\left(\frac{\omega}{\omega_T}\right) / \left[\cosh\left(\frac{\omega_F}{\omega_T}\right) + \cosh\left(\frac{\omega}{\omega_T}\right)\right] \\ &\text{Ellipsometric characterization? 2D? RPA model?} \\ \hline f\left(\omega\right) &= \sinh\left(\frac{\omega}{\omega_T}\right) / \left[\cosh\left(\frac{\omega_F}{\omega_T}\right) + \cosh\left(\frac{\omega}{\omega_T}\right)\right] \\ &\text{frequency of incident light, [eV]} \\ \hline \omega_T &= k_B T \\ \psi_F & \text{chemical potential, [eV]} \\ \hline \Gamma, \gamma & \text{scattering rates, [eV]} \\ \hline \end{array}$$

2.5<sub>|</sub>

<u>\_</u>

0.2 eV

0.3 eV

#### INTRO: GRAPHENE MODELS

PhotonicVASEfit started as a Matlab script for ellipsometric characterization of graphene

- Modified Fresnel's formulas for arbitrary stacks with any number of 2D layers •
- Levenberg-Marquardt algorithm, GUI in Matlab •
- Models: RPA, Spline, Critical points (Padé approximation) •

 $\sigma_{\rm RPA}\left(\omega\right) = \frac{8\iota}{\pi} \frac{\omega_T}{\omega + \iota\Gamma} \log \left| 2\cosh\left(\frac{\omega_F}{2\omega_T}\right) \right|$ 

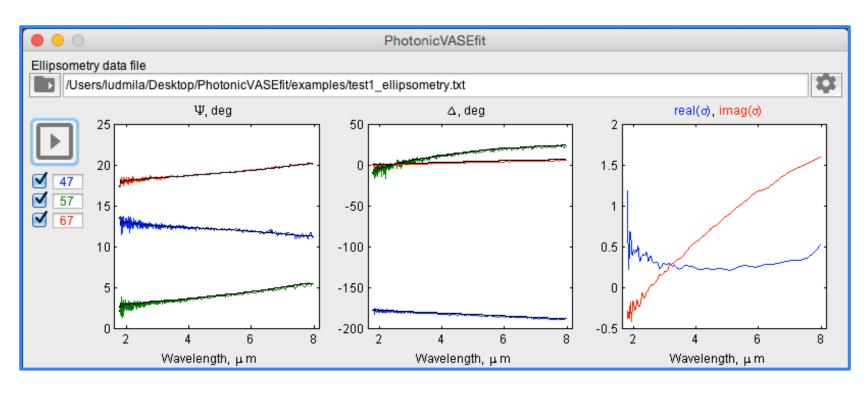
% w - frequency range from ellipsometry Sigma\_spline = spline(w0, sigma\_re\_fit + sigma\_im\_fit, w) Not TD friendly Spline

#### Critical points model

$$\begin{split} \sigma(\omega) &= \sigma_{1} \\ + \sum_{i \in I_{1}} \frac{a_{0,i}}{b_{0,i} - \iota \omega} \\ \text{(Drude term)} \\ \sigma(t) &= \sigma_{1} \delta(t) + \sum_{i \in I_{1}} A_{i} e^{-\gamma_{i} t} U(t) \\ + \sum_{i \in I_{2}} A_{i} e^{-\gamma_{i} t} \sin\left(\omega_{i} t - \varphi_{i}\right) U(t) \\ \text{(single pole} \\ \mathbf{J}_{i}' + b_{0,i} \mathbf{J}_{i} = a_{0,i} \mathbf{E} \\ \end{split}$$

$$\begin{split} \sigma(\omega) \approx & \frac{a_0 - \iota \omega a_1 + \ldots + (-\iota \omega)^m a_m}{b_0 - \iota \omega b_1 + \ldots + (-\iota \omega)^n} \\ & \text{[m/n] Padé approximant, } \mathbf{m} \leq \mathbf{n} \end{split}$$

Not TD friendly


 $\infty$ 

 $\left| \left| \left( + \frac{4}{\iota \pi} \left( \omega + \iota \gamma \right) \int_{0}^{\infty} \frac{1}{4 \omega'^{2}} \right) \right| \right|$ 

amplitude  $A_i$ oscillation frequency  $\omega$  $\gamma_i$ damping phase  $\varphi_i$ Dirac delta function Heaviside step function



## 1. Data Selection (TUTORIAL)



• Accepted data file formats

| Waveleng                   | lth | 2*k columns | Ψ <sub>1</sub> | Δ <sub>1</sub> | 2*m columns | (Zero columns are auto removed) |
|----------------------------|-----|-------------|----------------|----------------|-------------|---------------------------------|
| duplicates a<br>auto remov |     | k≥0         |                |                | m≥0         |                                 |

- Select ellipsometry data file
  - o local files
  - $\circ$  remote files
- Auto scan (adjust if needed
- Fit angles selectively (checkboxes)
- Filter Data
  - o visual filter (brushing tool)
  - o itemized filter

### 2. Substrate (TUTORIAL)

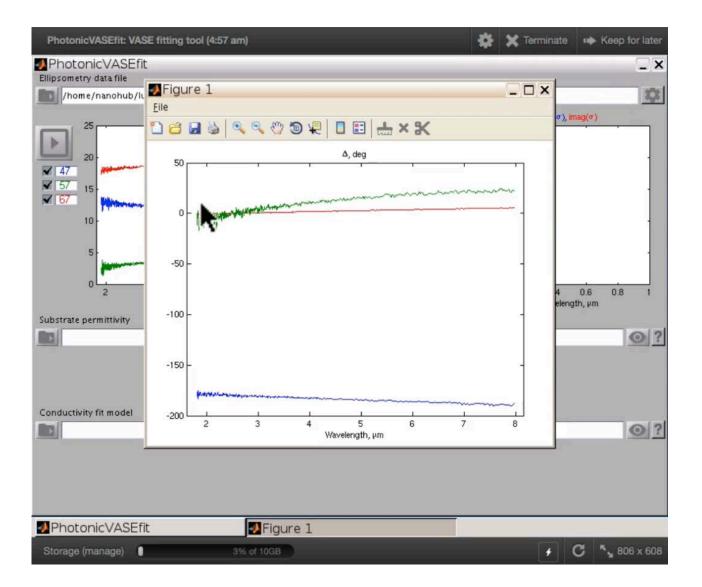
?

Ο

| Substrate | permittivity |
|-----------|--------------|
|-----------|--------------|

1 + 1.0281\*lum^2/(lum^2-0.2487^2) + 0.8204\*lum^2/(lum^2-17.5482^2)

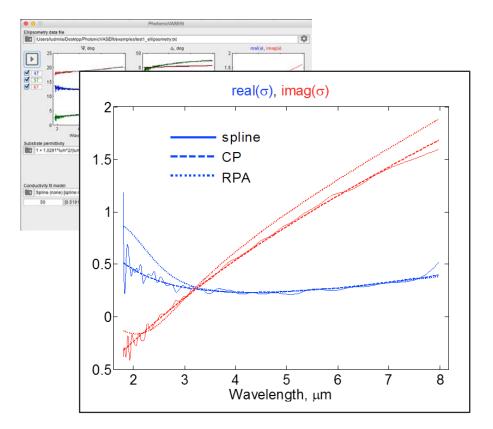
- Interactive multi-functional "Omnibox":
  - o "as-you-type" database search
  - o formula input (from file or manual)
  - o file import
- Table data AND models
- Quick look AND quick compare AND quick close
- Question mark


## 3. Conductivity Fitting Model (TUTORIAL)

| Conductivity fit model                                |  |  |  |  |  |  |  |  |  |  |
|-------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|
| Spline (none) [spline model from spline] { 1:20000}nm |  |  |  |  |  |  |  |  |  |  |
| 50 [0.5191 0.34584 [1.5965 1.4972                     |  |  |  |  |  |  |  |  |  |  |

- Any model from database OR custom model
- Parameters are dynamically displayed
- Right click to include/exclude a parameter to fitting
  - o white fixed to current value
  - o grayed to be fitted using current value as initial value
- Results are not guaranteed
  - o accurate substrate characterization
  - o initial values
  - o iteration limit

# DEMO https://nanohub.org/resources/photonicvasefit


## DEMO



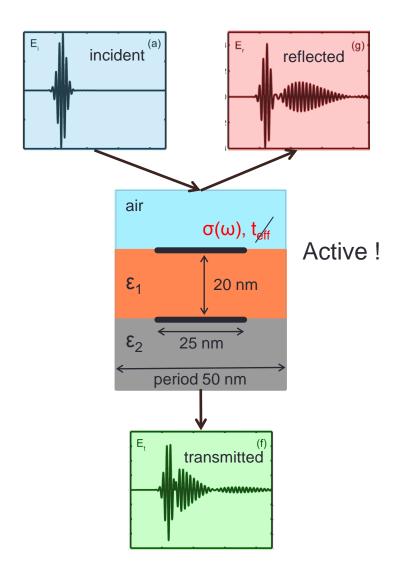
## **USING RESULTS**

### **RESULTS: Graphene**

#### PhotonicVASEfit RESULTS for graphene



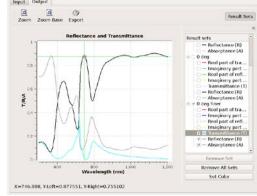
**Spline** – very good fit, slow (too many parameters ~100),


does not represent physics, fictitious oscillations

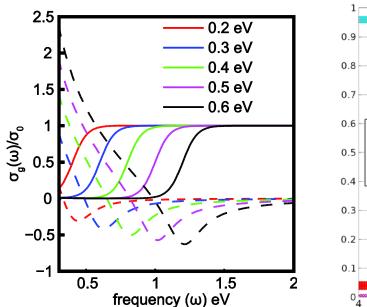
**RPA** – physical parameters, T,  $E_F$ ,  $\gamma$  retrieval, slow (iterative integration)

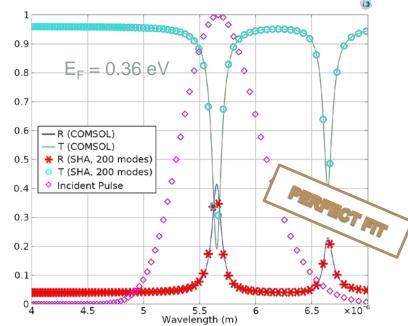
Critical points – good fit, only 4 parameters, causal (TD-friendly), fast

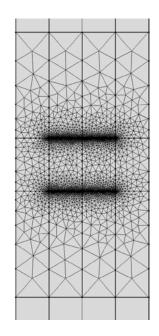

L. Prokopeva and A. Kildishev "Time Domain Modeling of Tunable Graphene-Based Pulse-Shaping Device", ACES 2014


#### TD: Active Pulse Shaping with graphene nanoribbons




#### **RESULTS: FD SIMULATIONS**


**EXPERIMENTALLY FITTED!** 














### **RESULTS: TD SIMULATIONS**

#### **EXPERIMENTALLY FITTED!**



SPONSORED BY: OMSOL 

> 0.5 0.4 0.3 0.2 0.1

> > 0

-0.1 -0.2

-0.4

-0.5

-0.7

4

4.5

5

5.5

6

FREE WEBINAR June 11, 2015

Simulating Graphene-Based Photonic and Optoelectronic Devices

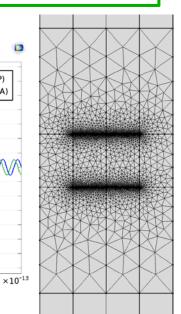
Prof. A. V. Kildishev, Purdue University

Register at: http://www.comsol.com/events/webinars

### Good agreement between the TD (Comsol, 3CP) and FD iFFT (SHA, RPA) models 0.7 Transmitted Ex (V/m) - TD COMSOL (3CP) 0.6 Transmitted Ex (V/m) - FD SHA iFFT (RPA) -0.3 -0.6

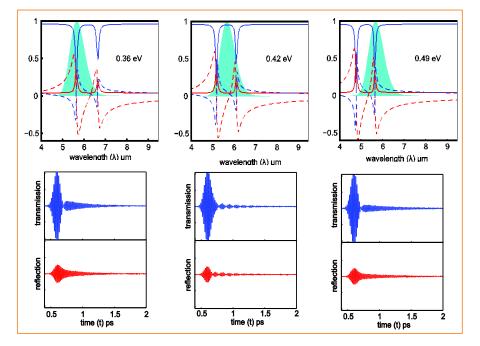
7 Time (s)

7.5


8

8.5

9.5


9

6.5



Models available at: http://www.comsol.com/community/exchange/361/

> **FDTD** with SBC (unpublished)



### **THANK YOU!**

**Contacts us:** 

kildishev@purdue.edu

lprokop@purdue.edu

https://nanohub.org/tools/photonicvasefit

Cite this work

Researchers should cite this work as follows:

Ludmila Prokopeva; You-Chia Chang; Alexander V. Kildishev (2015), "PhotonicVASEfit: VASE fitting tool," https://nanohub.org/resources/photonicvasefit. (DOI: 10.4231/D39Z90C98).

BibTex EndNote