

Simulation of organic solar cell with graphene transparent electrode

P. Paletti¹, R. Pawar¹, G. Ulisse², F. Brunetti², G. lannaccone^{1,3}, G. Fiori^{1,3} ¹University of Pisa, ²University of Rome Tor Vergata, ³Quantavis s.r.l.

Go-NEXTs project (EC FP7 NMP)

Introduction

 Organic semiconductor solar cells (OSCs) have recently shown an impressive acceleration in power conversion efficiency (PCE) improvement.

 Bulk HeteroJunction Solar Cells (BHJ-SCs) represent a promising route to low-cost, large-area cells and modules, and typically use indium tin oxide (ITO) as transparent electrode.

- Bulk HeteroJunction Solar Cells (BHJ-SCs) represent a promising route to low-cost, large-area cells and modules, and typically use indium tin oxide (ITO) as transparent electrode.
- ITO presents serious issues related to:

- Introduction
- Bulk HeteroJunction Solar Cells (BHJ-SCs) represent a promising route to low-cost, large-area cells and modules, and typically use indium tin oxide (ITO) as transparent electrode.
- ITO presents serious issues related to:
 - release of oxygen and indium into the organic layer

- Introduction
- Bulk HeteroJunction Solar Cells (BHJ-SCs) represent a promising route to low-cost, large-area cells and modules, and typically use indium tin oxide (ITO) as transparent electrode.
- ITO presents serious issues related to:
 - release of oxygen and indium into the organic layer
 - poor transparency in the blue region

Introduction

- Bulk HeteroJunction Solar Cells (BHJ-SCs) represent a promising route to low-cost, large-area cells and modules, and typically use indium tin oxide (ITO) as transparent electrode.
- ITO presents serious issues related to:
 - release of oxygen and indium into the organic layer
 - poor transparency in the blue region

stiffness, which prevents its use in flexible solar cells

Introduction

- Bulk HeteroJunction Solar Cells (BHJ-SCs) represent a promising route to low-cost, large-area cells and modules, and typically use indium tin oxide (ITO) as transparent electrode.
- ITO presents serious issues related to:
 - release of oxygen and indium into the organic layer
 - poor transparency in the blue region
 - stiffness, which prevents its use in flexible solar cells
 - Iarge cost due to the limited supply of indium

Investigated issues

Gianluca Fiori

University of Pisa

Electron Transport Laye

Investigated issues

University of Pisa

Electron Transport Lave

Investigated issues

University of Pisa

Investigated issues

University of Pisa

Electron Transport Laye

Deposition of MoO₃ on graphene can increase graphene WF [Tong et al., Adv. Materials 23, 1514, 2011]

Fermi level closer to the valence band edge of the HTL can improve efficiency

- Optimized geometries (both Mo- or O-terminated top interfaces)
- Van der Waals interactions are considered
- DFT with Quantum Espresso

Work Function tuning

UV Photoelectron spectroscopy exp. are consistent with Mo-term. layers (electronegativity of Mo: 2.15 eV – electronegativity of O: 3.44 eV)

Graphene mobility

Phonon-limited mobility: acoustic + optical phonons [Perebeinos et al., PRB, 81, 1, 2010], [Shishir et al., Jour. Of Physics-Cond. Matter, 21, 344201, 2009]

Defect limited mobility through atomistic simulations
[A. Betti et al., IEEE TED, Vol. 58, p. 2824, 2011]

Mobility vs charge density

Mobility is mainly limited by defects (vacancies, grain boundaries)

Investigated issues

University of Pisa

Electron Transport Laye

P3HT

Gianluca Fiori

Parameter calibration with experiments

Gianluca Fiori

4

3

Ŕ_

(mW/c

nsit

J

Power

0.6

Gianluca Fiori

PTB7

PTB7: Calibration with experiments

Perovskite

Calibration with experiments

Exp: You et al., ACS Nano 8, 1674, 2014

Gianluca Fiori

PHJ with Perovskite

Figure of merits (FF and PCE) are really sensitive on the contact resistance

 WF tuning plays an important role in SC design (SC less sentive on WF than on contact resistance)

Investigated issues

University of Pisa

Electron Transport Laye

Light management: grating of the graphene electrode

Comsol multiphysics considering complex refractive index

Enhancement factor up to 21%

All effect combined

We have performed a detailed investigation of graphene-based organic solar cells with multi-scale simulations [ab-initio + DD + electromagnetics]

Graphene-based solar cells can outperform ITO-based solar cells

ONLY IF

The series resistance of the graphene layer can be minimized

Gianluca Fiori

Thank You!

Acknowledgment: EC FP7 project GO-NEXTS

gfiori@mercurio.iet.unipi.it