

BEOL Process Challenges

IBM Research

2015 IEDM Short Course #1 Emerging CMOS Technology at 5nm and beyond Sunday, December 6, 2015

Takeshi Nogami

IBM Research @ Albany Nano Tech Center IBM Corporation, NY, USA tnogami@us.ibm.com

IBM

Acknowledgements to IBM Alliance Team members

Terry Spooner Daniel Edelstein Larry Clevenger Benjamin Briggs Griselda Bonilla Eric G Liniger Son Nguyen James J Kelly Huai Huang Vamsi Paruchuri

IBM Research ¹ GLOBALFOUNDRIES Inc.

*currently GLOBALFOUNDRIES Inc. **currently Micron Technology ** Sevim Korkmaz Moosung Chae¹ **Christopher Penny** Juntao Li Wei Wang **Paul S McLaughlin** * Christopher Parks * Anita Madan **Stephan Cohen Thomas Shaw** Deepika Priyadarshini Hosadurga Shobha **Raghuveer Patlolla** Xunyuan Zhang⁴ **Donald Canaperi Theodorus Standaert Elbert Huang**

IEDM 2006 32nm BEOL Short Course - Bob Wisnieff / IBM

Did not happen in 32 nm to 10 nm

IBM Research | Silicon Technology

- 1. Cu resistance:
 - **1. Minimize barrier thickness**
 - 2. Maximize Cu grain size
- 2. Capacitance:
 - 1. Spin-on dielectric, SiLK
 - 2. SiLK Hybrid low-k process
- 3. Carbon-Nanotube
- 4. Superconducting materials
- 5. Supercritical fluids for cleans and strip
- 6. ECMP
- 7. CVD Cu Seed
- 8. Direct electroplating on Ru barrier
- 9. Electroless plating / seed repair

Happened in 32 nm to 10 nm

- 1. Porous PECVD-SiCOH (22 nm BEOL)
- 2. Air gap
- 3. Electroless deposition of CoWP
- 4. ALD-TaN

Not mentioned, but happened.

- 1. CuMn alloy seed (32 nm and beyond)
- 2. CVD-Co wetting layer
- 3. Selective CVD-Co cap

2015 Dec. 6

RC Reliability (Line R, Via R, C) Defects, Yield

Innovation to achieve these three simultaneously

Fundamentals that we need to understand

- 1. Line Resistance
- 2. Via Resistance
- 3. Capacitance
- 4. Electromigration
- 5. TDDB
- 6. Cu gap fill
- 7. Barrier test
- 8. RC Variation

Common approaches

- 1. Stress-liner capped anneal for Line R
- 2. Tall metal for Line R
- 3. Self Forming Barrier for Line R
- 4. Lower-k integration and air gap for C
- 5. Selective Co cap for EM
- 6. Cu alloys for EM
- 7. CVD-Co, Ru for Cu gap fill

Innovative approaches

1. Integrated solution with alternative barrier

2015 Dec. 6

- 2. Co plug to reduce the aspect ratio of Cu
- 3. Alternative conductors
- 4. Alternative diffusion barriers

IBM Res Common approaches vs. Innovative approaches

Understanding fundamentals of these three components

Innovation to achieve these three simultaneously

- 1. Common approaches
- 2. Innovative approaches

3. Radical technologies (graphene etc.) → Prof. Saraswat in the afternoon

OUTLINE

- 1. Technology Scaling and BEOL
- 2. BEOL Challenges
 - Tradeoff's
- 3. Potential Solutions
 - Fundamentals
 - Common Approaches
 - Innovative Approaches
- 4. Summary

IBM

BEOL has started to void FEOL scaling benefits

Scaling factor of Interconnect is no longer k, but nk (n>1)

Interconnect RC started to dominate the delay. It started already from 10 nm CMOS.

15+ year continuous BEOL innovations

Time

BEOL has started to void FEOL scaling benefits

IBM Research | Silicon Technology

Scaling factor of Interconnect is no longer k, but nk (n>1)

Interconnect RC started to dominate the delay. It started already from 10 nm CMOS.

OUTLINE

- 1. Technology Scaling and BEOL
- 2. BEOL Challenges
 - Tradeoff's
- 3. Potential Solutions
 - Fundamentals
 - Common Approaches
 - Innovative Approaches
- 4. Summary

Tradeoff between Line R vs. EM

-	-	-		-
	-	-		-
	-	-	-	-
and the second s			-	

Low Via R -> Thinner Barrier at Via Bottom - Insufficient EM Blocking Boundary

2015 Dec. 6

Cu Dual Damascene BEOL requires a Wetting Layer in addition to Diffusion Barrier.

Common approaches and Innovative approaches for 5 nm BEOL

Innovation to achieve these three simultaneously

Understanding fundamentals

Fundamentals that we need to understand

- 1. Line Resistance
- 2. Via Resistance
- 3. Capacitance
- 4. Electromigration
- 5. TDDB
- 6. Cu gap fill
- 7. Barrier test
- 8. RC Variation

1. Common approaches

Common approaches

- 1. Stress-liner capped anneal for Line R
- 2. Tall metal for Line R
- 3. Self Forming Barrier for Line R
- 4. Lower-k integration and air gap for C
- 5. Selective Co cap for EM
- 6. Cu alloys for EM
- 7. CVD-Co, Ru for Cu gap fill

2. Innovative approaches

Innovative approaches

- 1. Integrated solution with alternative barrier
- 2. Co plug to reduce the aspect ratio of Cu
- 3. Alternative conductors
- 4. Alternative diffusion barriers

OUTLINE

- Innovative Approaches
- 4. Summary

2015 Dec. 6

Line Resistance

Cu line resistivity, resistance vs. Dimension

Cu resistivity is not just simply determined by Cu volume. IC spec is Cu line resistance, not resistivity. That means we need both an acceptable resistivity, and acceptable line area (e.g. aspect ratio at a given pitch).

Line Resistance

Fundamental-1

Surface scattering of MnSiO3/Cu interface

- (2) Grain boundary scattering is the second cause.
- (3) Larger Cu volume reduces the contribution of (1) and (2).

Impurity Scattering and Cu Alloy

Relative decrease in line R penalty in finer dimensions

T. Nogami et. al, IITC 2013 IBM

- 1. CuMn alloy leads to <10% higher Cu line R, however,
- 2. The penalty is reduced to <3% in 10 nm BEOL.
- 3. Higher Mn % in finer dimensions with less R penalty.

- 1. R(bottom material) and R(bottom interface) are dominant R components.
- 2. Material design of the R(bottom material) is one of the keys to lower via R.

Fundamental-2

Via Resistance

Via Interface Material due to Wetting Layer

1. CVD-Co, CVD-Ru on Ta(N) may create high R material at via bottom.

Decomposition of precursors for Co and Ru may contaminate the interface. 2.

Soutter Depth (A)

10 nm

C1 35 O1 35

CoS Curl

<mark>812</mark> Te2

N

Capacitance

Dielectric (LK, ULK) materials

- ~ 150 different materials identified in the mid-90's (spin-on glasses, fluorinated silicate glass (FSG), diamond like carbon (DLC), organosilicate glass (OSG, SiCOH)).
- Delays observed with ULK implementation due to several integration challenges.
- PECVD SiCOH based materials are most prevalent today.

Dielectric damage

Capacitance

Dielectric materials can be damaged by many steps in the process flow. Damage results in increased capacitance and susceptibility to yield and reliability failure.

The degree of damage decreases as the %C in the film increases. Selective CVD-Co pre-clean damage on top. PVD liner cause damage on Sidewall

Dielectric Cap

The additional C impact of non-scaling cap thickness is that nextlevel trench bottoms get too close to the cap, and penetrate fringing fields (Via height becomes too small vs. cap thickness).

Cu top surface

Electromigration

Fundamental-4

2015 Dec. 6

EM Void Nucleation Site and Fast Diffusion Path

TDDB

The major diffusion path is the low-k/cap-dielectric interface. TDDB is affected by spacing, low-k dielectric materials, CVD-Ru wetting layer, CMP process, Sel-Co cap, etc.

Root-E model is overly conservative.

CMP issues of Co and Ru wetting layers

Co CMP Divot

Cu Gap Fill

T. Nogami IITC 2013 IBM

Ru CMP Cu-recess

- 1. Co liner is lost along the sidewall, being followed by Cu divot formation.
- 2. Cu shows faster dissolution in the presence of Ru which results in Cu recess.

CMP issues of Co and Ru wetting layers

Co CMP Divot

Cu Gap Fill

T. Nogami IITC 2013 IBM

Ru CMP Cu-recess

- 1. Co liner is lost along the sidewall, being followed by Cu divot formation.
- 2. Cu shows faster dissolution in the presence of Ru which results in Cu recess.

Fundamental-6

Cu Gap Fill

Post CMP Cu Fill Improvement with Cu Chemistry

PVD TaN/Co/Cu

Baseline chemistry Waveform 1 Waveform 2 Waveform 3 Waveform 1 Waveform 2 Waveform 3 Image: Stream of the stre

center

4nm plated Cu on PVD Cu/Co (with 20nm Cu underlayer)

4nm plated Cu on PVD Cu/Ta (with 20nm Cu underlayer)

J. Kelly et al., ECS 2013 IBM

Diffusion Barrier Test

O₂ Barrier Test

Diffusion barrier needs to work as a diffusion barrier to oxygen, not just as a diffusion barrier to copper. Conventional PVD-TaN and alternative barrier metal candidates are examined in the O_2 barrier test.

O₂ Barrier Test

O₂ Barrier of Alternative Barriers

All alternative barriers showed imperfect O₂ Barrier.

T. Nogami al., IITC 2014 IBM

Fundamental-7

Diffusion Barrier Test

Cu ion diffusion

barrier performance in geometry close to actual

T. Nogami al., IITC 2014 IBM

RC variation

Property of	-		_		
-	_	-	-		-
	-	-			
_	-	-	-	-	-
_	_		_	11.1	-

RC variation impact on circuit performance

Fundamental-8

C. Pan, A. Naeem et al, IITC, 2014, Intel

Interconnect variation comes from lithography, alignment, etching, polishing, and orientation

Fundamental-8

RC variation by multiple patterning

RC variation

RC variation by multiple patterning

 Illustration of line dimension (width, height) with multiple patterning (LEx)

Fundamental-8

M. Tagami et al, IITC, 2012 IBM

RC variation

Performance Improvement for BEOL Resistance Due to EUV

10NM wafers with single exposure EUV have tighter distribution than with multiple patterning.

Improved variability observed for line and via resistance compared to multiple patterning 193 approaches

Fundamental-8

OUTLINE

- 2. BEOL Challenges
 - Tradeoff's
- 3. Potential Solutions
 - Fundamentals
 - Common Approaches
 - 1. Stress-liner capped anneal for Line R
 - 2. Tall metal for Line R
 - 3. Self Forming Barrier for Line R
 - 4. Lower-k integration and air gap for C
 - 5. Selective Co cap for EM
 - 6. Cu alloys for EM
 - 7. CVD-Co, Ru for Cu gap fill

Innovative Approaches

4. Summary

2015 Dec. 6

Line Resistance

Thermal stress control in Cu Interconnects

TaN stress-liner on top of plated Cu enables higher temperature post-plating anneal to lead to larger grains and lower Cu resistivity.

Common Approach-1 esea

Line Resistance

Tall Metal (High Aspect Ratio Metal)

Line Height 10.3% up RC dropped by 9.3%

R decreases with metal height, while C does not increase as much because of fringing C contribution.

- 1. Contribution of cap material is significant
- 2. In other words, taller metal does not impact C proportionally and is advantageous for RC.

_	-	-			
-	-	-	-	-	
	-		-	- 6	
-	-				

Conventional Self-Forming Barrier

Common Approach-2 sea

Line Resistance

Self-forming barrier (SFB)

However, CMP in SFB process causes¹ voiding and delamination when it was integrated with ultra low-k.

2015 Dec. 6

T. Nogami et al., IEDM 2015 IBM

 Tune ULK film composition and properties using chemistry, plasma conditions, and curing conditions.

- Porefilling can reduce integrated k and improve device reliability by minimizing process damage to ULK and maintaining etch profile.
- Porefilling may enable lower k dielectric in future technology node.

Common Approach-3 esea

(a)

300nm

Airgap

Capacitance

(b)

300nm

Airgap enables further C reduction

SWPL

D. Edelstein et al, AMC 2005, IBM

2015 Dec. 6

Significant capacitance reduction demonstrated with insertion of air gap.

H-W Chen et al, IITC 2008 TSMC Samsung 4 Gbit DDR3 SDRAM (26-nm)

Intel/Micron 64-Gbit Planar Flash (20-nm)

Source: D. James, CSTIC 2014.

Common Approach-4 esea

(a)

Electromigration

Cu top surface (Selective Co Cap)

Metal/Cu interface has less EM void nucleation and less Cu diffusion. Selective CVD-Co, CVD-Ru and Selective electro-less CoWP have been proposed or used in production.

Electromigration

Common Approach-4 esea

Electromigration

Cu Alloys (Mn, Al)

Common Approach-5 esea

Cu Gap Fill

CVD-Co wetting layer

Gap Fill and EM Improvement in 22nm in k=2.4 SiCOH with CVD-Co

1 / Cu Area (a.u.)

R-H Kim al., IITC 2015 Samsung

OUTLINE

- 1. Technology Scaling and BEOL
- 2. **BEOL Challenges**
 - Tradeoff's
- 3. Potential Solutions
 - Fundamentals
 - Common Approaches
 - Innovative Approaches
 - 1. Integrated solution with alternative barrier
 - 2. Co plug formation to reduce the aspect ratio of Cu
 - 3. Alternative conductors
 - 4. Alternative diffusion barriers

4. Summary

2015 Dec. 6

Innovative approach-1

Integrated Solution

Reduced RC with EM reliability and Cu gap fill simultaneouly

Cu Gap Fill / EM / Via R

Cobalt Bottom-Up Contact and Via Prefill

M. Veen, et. Al., IITC 2015 Entegris, IMEC

(a) starting structure

- (b) Selective Co growth
- (c) Conventional platin

Fig.8b Zoomed Cross-sectional SEM view of Co fill of vias

Innovative approach-3

Alternative conductors to Cu

_				
_		_		
			_	
	_	_		
	-			

W interconnect

2015 Dec. 6

F. Liu, IEEE IITC 2014, IBM

Co interconnect

Survival Time (a.u.)

Innovative approach-4

Alternative Barrier

Cu diffusion barrier: graphene

Ling Li, et. Al., VLSI Symposium 2015, Stanford Univ., Univ. of Wisconsin

w/SLG (4 A) v/TaN (2 nm) 1.0 **Cummulative Probability** w/o 0.8 Thinner 4.8X 0.6 Barrier 0.4 ŝ 0.2 T = 100 °C 0.0 = 7.0 MV/cm stress 10 100 1 Time to Fail (s)

<u>3 Å single-layer graphene (SLG)</u> gives 3.3X longer TDDB MTTF than <u>2 nm TaN</u>

R. Mehta et al., Nano Lett., 2015 Purdue Univ.

strong enhancement of electrical and thermal conductivity

Low-temperature deposition of graphene around Cu

OUTLINE

- 1. Technology Scaling and BEOL
- 2. BEOL Challenges
 - Tradeoff's
- 3. Potential Solutions
 - Fundamentals
 - Conservative Approaches
 - Innovative Approaches
- 4. Summary

2015 Dec. 6

Summary

2015 Dec. 6

- 1. 5 nm BEOL spec's are likely to be achievable with a Cu process by introducing innovative technology and by common process improvements.
- 2. Three tradeoff's of RC, Reliability and Defectivity need to be balanced and resolved by innovation and improvement.
- 3. Some alternate conductors have 2x line R, but have other potential benefits such as EM and become competitive to Cu.

Acknowledgement

This work was performed by the Research and Development Alliance Teams at various IBM Research and Development Facilities.

The presenter thanks to all coworkers of IBM and IBM Alliance for their cooperation.

Back up

© 2015 IBM Corporation

2015 Dec. 6

IBM Research | Silicon Technology

D. Edelstein, IITC 2012

Scaling Challenges for On-Chip Cu/Low-k Multilevel Wiring (BEOL)

Scaling has always gone against wiring performance and reliability. The problems are not new, but grow more acute the deeper we go into the nanoscale.

63

I IPM Peccareb J. Silicon Technology

D. Edelstein, IITC 2012

Innovations for Low-k Insulator Performance and Reliability

Increasing TDDB Reliability with Advanced Low-k Cap and Porous SiCOH.
Cu containment, and dielectric strength lead to higher TDDB reliability.
All with equal or slight reduction in overall effective dielectric constant.

TDDB Failure Probability (%)

BEOL has started to void FEOL scaling benefits

IBM Research | Silicon Technology

Scaling factor of Interconnect is no longer k, but nk (n>1)

Interconnect RC started to dominate the delay. It started already from 10 nm CMOS.

Critical elements in 7nm and 5nm BEOL

Tradeoff's among RC, Reliability and Cu Gap Fill

We need to reduce the line R, via R, and capacitance. At the same time, reliability (EM, TDDB) needs to be maintained. Before these, defect-free Cu gap fill is a prerequisite.

Common Approach-3 esea

Interconnect dielectrics

Dielectric	V1.a	V1.b	V3	V4.a	V4.b
Precursor	DEMS+BCHD		Embedded porogen	Embedded porogen+Carbosilane	
k (@ 150C)	2.53	2.4	2.46	2.53	2.42
Breakdown voltage (MV/cm)	>7.3	> 6.0	> 7	7	
E (GPa)	7.2	4.9	6.64	10.2	6.64
Adhesion (J/cm2)	4.5	4.4	3.9	4.4	3.9
С%	15.7	15.5	21.1	16.3	17.4
Porosity (%)	16.3	24.5	14.4	17.9	19.7
Pore diameter (nm)	1.2	1.2	1	1.1	1.3
PID	0.67	0.9	0.57	0.49	0.65

Dielectrics and selected properties

S. Nguyen et.al., MRS 12015 IBM

Dielectrics implemented by IBM and Alliance partners

A. Grill et.al., Appl.Phys.Rev., 12014 IBM