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Outline

• Scaling limits of interconnects
Ø Alternatives to Cu

• Performance simulations
• Cu, CNT, optical interconnects

• Technology for novel optical interconnects
• 3-D integration

• Summary
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Effect of Scaling on interconnect performance
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Graphene vs. TaN Barrier for Cu

Thinner barrier: 3.5 Å single layer graphene is better than 2 nm TaN

L. Li … H.-S. P. Wong, Symp. VLSI Tech. 2015
L. Li … H.-S. P. Wong, ACS Nano 2015
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How can we improve interconnect performance?

– Carbon nanotubes/ Graphene

– Optical interconnects 

– 3D

multi-core 
processor layer

photonic NoC

3D memory
layers
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Optical & Electrical On-chip Wires: Schematic

Repeater
Wire

Driver Receiver

Electrical Interconnect (Cu or CNT)

Optical Interconnect

Photodector restores optical 
signal into electrical signal

Laser/modulator converts electrical 
signal into optical signal

Photodetector 

TIR 

Rf 

post-amplifier 

(number of stage) 

Modulator 

Input 
Electrical 
Signal 

Optical 
signal out 

buffer chain 
(number of stage) 

laser source 

Transmitter System Receiver System 

Waveguide 

-  Electrical 

-  Optical 
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E
E

1-D conductors: 3-D conductors:

Quantum Wires: 

• 1D system with limited density of 
states. Hence quantum effects play 
an important role in determining the 
values of R, L and C

• Mean free paths as large as 1.6µm.

Conventional wires : 

• Backscattering through a series 
of small angle scatterings.

• Mean free paths ~ 30nm.

Potential Candidates for 
GSI Interconnects. 

Carbon Nanotubes
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RLC Model for Single-wall CNT: Inductance
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• Nanotube is a 1D system with limited density of states
• With potential applied the carriers have to move to higher energy states resulting 
in increase in kinetic energy resulting in kinetic inductance LK. 

• To add electron into the wire, it requires additional potential energy, which is 
correspondent to quantum capacitance CQ. 
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CNT bundle with nCNT tubes
– Wire dimension is same as Cu/low-K
– Packing density: Fraction of metallic 

SWCNTs
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Formidable Task: 
Fabricating Dense Bundles of SWNTs

• Fabricating Bundles of Densely Packed SWNTs for interconnects has 
proven very challenging. 

• Making contacts to horizontal bundles of SWNTs is very difficult.

• Promising progress in creating aligned isolated SWNTs by transferring 
SWNTs grown on sapphire to other substrates. 

• Single SWNTs are too resistive for general purpose CMOS circuits.

Young Lae Kim et al. 
(RPI, RICE & NorthEastern Univ)

C.V. Thompson, MIT

Vertical Growth
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Examples of Dense Bundles of SWNTs
Growth for Interconnects

Y. Nishi and H.-S. Philip Wong (Stanford)

Awano et al. IITC 2005

Growth in Vias

256-Element CNT Ring Oscillator

H.-S. Philip Wong (Stanford)
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Potential reliability performance 
comparison

• Good thermal conductivity
– Graphene: 
– CNT:
– Copper:

• High breakdown current
– Graphene:
– CNT:
– Copper (EM threshold):

. ~ . /3 34 84 10 5 30 10 W mK× ×

. ~ . /3 31 75 10 5 80 10 W mK× ×

/385 W mK

~ /8 210 A cm

~ /9 210 A cm
~ /7 210 A cm
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Local Interconnect: Cu vs. CNT Bundle

- CNT bundle doesn’t suffer from electromigration
(Cu wire does !! Jmax = 1.47x107 A/cm2 [ITRS] )

- Aspect Ratio of CNT bundle can be tuned. Even a single nanowire can 
be used as an interconnect. 

Koo, Cho, Kapur and Saraswat, 
IEEE TED, December 2007.

H

W

PD is packing density of 
metallic CNTs 
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GNR interconnects conductivity

• Tight-binding model: GNR conductivity exceeds Cu at 8nm 
linewidth

• Best experimental GNR conductivity is comparable to Cu

Theory Experiment

A. Naeemi et al., EDL Vol.28, pp.428, 2007; R.Murali et al., EDL vol.30, pp.611 2009; 
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• Cu, CNT: small wire width → more repeaters, wire capacitance → latency ↑
• CNTs and optics are favorable for shorter semi-global wires
• Optics: transmitter/receiver latency is the main component
• Optics favorable for longer wires 

Wmin for Cu, CNT from ITRS
for optics = 0.6µm

Cdet=Cmod=10fF

Semi-global Global
On-chip Interconnect Performance: Latency

- Electrical interconnects
latency by wire and repeaters

- Optical interconnect (1 Channel)
latency by end devices

!

Koo, Kapur and Saraswat, IEEE Trans. Electron Dev., Sept. 2009
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!
• Cu, CNT: small wire width → Energy per bit decreases as wire pitch is scaled (CV2) 
• CNTs is favorable for shorter global wire
• Optics: transmitter/receiver power is the main component
• Optics favorable for longer wires 

Semi-global Global

- Electrical interconnects
power dissipated by wire and 
repeaters

- Optical interconnect (1 Channel)
power dissipated by end devices

Wmin for Cu CNT from ITRS
for optics = 0.6µm

Cdet=Cmod=10fF

On-chip Interconnect Performance: Energy/bit

Koo, Kapur and Saraswat, IEEE Trans. Electron Dev., Sept. 2009
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Comparison	Study:	Global	Interconnect
CNTs,	Cu,	Optics

- BW density 
Cu and CNTs:  fclk / pitchwire

Optics:  no. of wavelength of WDM

- Power density 

Cu & CNTs (non-linear): 

Cap and wire pitch 

Optics (linear): 

no. of wavelength 

channel  

- Latency 
Optics < CNTs < Cu   

Power Density

Latency

Koo, Kapur and Saraswat, IEEE Trans. Electron Dev., Sept. 2009
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• Beyond certain length optical I/O is more power efficient
• Critical length decreases at higher bit rate & lower detector 

capacitance
• Beyond 32nm Technology node critical length < 10cm

22nm

32nm

45nm

Optical Interconnect

Electrical Interconnect

90nm

65nm

Power Dissipation @Cdet=10fF

Off-Chip Interconnect Performance: 
Electrical vs. Optical 

C
det
=50fF

25fF

10fF

5fF

Critical length vs. Cdet
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Why Really Photonics?

Source: Keren Bergman, Columbia University 
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Communication Dominates Power

70-80% of total logic power is for 
communication

– Need proper consideration of wires!!
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Optimized 22nm
PDSOI processors

Devices

Wilfried Haensch, (IBM) Data Abundant Systems 
Workshop, Stanford Univ., April 2014

On-Chip Power Breakdown
50nm node

Chandra, Kapur and Saraswat, 
IEEE IITC, June 2002

More than half the power can be 
attributed to interconnects

Logic (27%) 

Signaling  
Interconnects 
   (27%) 

Memory (17%) 

Clock (28%) 

5% 5% 

Local lines 

Logic 
(Dynamic 
power) 

Latches 

Distribution (Interconnects) 

Memory  
(dynamic power) Memory  

(leakage power) 

Global lines 

Repeaters 

Semi-global lines 

23% 

< 1% 

17% 
25% 
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5% 
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        Logic  
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Why Off-chip Photonic Interconnects

§ Copper wires are reaching physical limits
§ Photonic interconnects offer the solution for the future

Copper wires Optical Interconnects 
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The Interconnect Problem
“For the long term, material innovation with traditional scaling will no longer 
satisfy performance requirements. Interconnect innovation with optical, RF, 
or vertical integration … will deliver the solution” (ITRS)

Source: Intel



23tanford University
araswat

Material Options for Optical Interconnects

GaAs

Si

Ge

Telecom standards
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• What are the right optical devices to use?
– Need to be cheap, available in large 

numbers
– Compatible with CMOS

• Silicon devices are a long shot
– Need 3D heterogeneous integration

• Flip bond III-V to Si CMOS
– Current process
– Cost, resources, yield?

• How about germanium?
– Bandgap ideal for λ = 1.5 µm
– Can be monolithically integrated on Si
– Becomes direct bandgap material by 

straining or adding tin

Si CMOS chip with gold bonding pads

GaAs optoelectronic chip
with indium flip-chip bumps
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Si Compatible Photonic Interconnect

Gupta...........Saraswat, 
OFC, March 2015

Okyay…....... Saraswat,
Optics Lett. 2006 

Photodector restores optical 
signal into electrical signal

Laser/modulator converts electrical 
signal into optical signal

§ Germanium devices can be monolithically integrated on silicon
§ Laser is the only missing component 

Laser Modulator Waveguide Detector

?Si!

Ge!

SiO2 Pad!

Highly strained!
Ge wire!!

Strained Ge 
pads pulling Ge wire!

Nam…..........Saraswat, 
Nano Letters, June 11, 2013. 
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Waveguides

(Kimmerlingr, MIT)

Technology for Optical Interconnects on Silicon: 
Optical Transmission Media

Bending Waveguides

Waveguide Crossings

Splitter

Couplers
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Selective and Lateral Overgrowth of Ge on SiO2

•Lateral Ge growth on SiO2 window achieved
•Dislocation density of Ge on SiO2 < 106 cm-2 (same 
thickness Ge on Si: 1×108 /cm2)

•Surface RMS roughness ~0.4 nm after CMP
•Ge is ~0.2% strained due to thermal mismatch with Si

1st Ge epitaxial growth 

H2 annealing 825°C 

Ge 
Si 

Si 
Ge 

SiO2 SiO2 

Si 

Ge 
2nd Ge growth + H2 anneal 

<311>  Direction Growth 

Si 

SiO2 SiO2 

Si 

Ge 

<100>  Direction Growth 

Si 

SiO2 SiO2 

Si 

Ge 

X-TEMSEM

400°C deposition + 800°C H2 anneal + 600°C deposition

Si!

Ge!
SiO2!

2μm!

Ju Hyung Nam…........K. Saraswat, J. Crystal Growth, April 2015

SiO2 

Ge 

TEM 

Si�

Ge�
SiO2�
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High Efficiency Ge p-i-n Photodetectors on Si

Increase in 
absorption 
coefficient

• Ge grown on Si by Multiple Hydrogen Anneal and Heteroepitaxy
(MHAH) Technique

• Ge film complies with Si substrate on cooling down resulting in tensile 
strain => bandgap reduces

• Detector efficiency improves at 1550nm due to tensile stress
• Dark Current high

Biaxial Tensile Strain

Photoresponse

Hyun-Yong Yu,…........ K. Saraswat, IEEE Electron Dev. Lett., Nov. 2009.
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High Efficiency Ge MSM Photodetectors on Si

• Fermi level pins near valance band in Ge ⇒ high dark current
• At anode insert a dielectric to depin metal Fermi level
• Choose dielectric with ~0 ΔEC to allow electron flow but large ΔEV to block holes
• No barrier seen by photocarriers, thus large photocurrent
• Under the reverse bias (PD operation), large barrier between metal & Ge

– Dark current is reduced by 3×103

3×103

suppression

Ju Hyung Nam…........K. Saraswat, (To be published)

No barrier for 
photogenerated carriers�

Dielectric 
with ~0 ΔEC 

Cathode

Anode
X 

Ge 

Si
SiO2
Ge
AlMSM TiO2MIS

GeMetal

Very low barrier –
large dark current
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Optical Modulator
Electro-optic Modulators

Lipson (Cornell)

o Index change
o Weak mechanism
o High Q
o Temperature tuning

Mach-Zehnder Modulators

o Phase shift effect in waveguides
o Large size and power consumption

CHAPTER 1. INTRODUCTION 19

Figure 1.11: (a) Top view of an asymmetric Mach-Zehnder silicon waveguide modu-
lator. (b) Cross-sectional view of the PN junction waveguide phase shifter fabricated
from a silicon on insulator wafer. (From [56]).

Electro-absorption Modulators

o Franz-Keldysh effect in bulk material 

QCSE Ge/SiGe Modulator
Harris and Miller (Stanford)Saraswat (Stanford)
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Ge/Si Electro-Absorption Franz-Keldysh Effect 
Modulator

CHAPTER 1. INTRODUCTION 23

(a)

Figure 1.13: (a) Semiconductor energy band diagram showing the Franz-Keldysh
e↵ect. The application of an electric field leads to overlap in valence band and con-
duction band wave functions, and hence optical absorption, at energies below the
semiconductor bandgap. (b) Absorption spectrum showing the Franz-Keldysh e↵ect
(adapted from [66]).

electro-optic modulators. The energy consumption is only 50 fJ per bit.

Quantum-Confined Stark E↵ect

While the FKE modulator discussed in the previous section achieves good perfor-

mance and a relatively low switching energy of 50 fJ/bit, to meet the energy targets

discussed in Section 1.2 it may be necessary to make modulators even smaller and

more e�cient. Particularly in the case of vertical incidence modulators, in which the

optical interaction length is several µm at most, a stronger electroabsorption mecha-

nism is required. Fortunately, extremely e�cient electroabsorption can be obtained

using the quantum-confined version of the Franz-Keldysh e↵ect, which is called the

quantum-confined Stark e↵ect (QCSE) [67,68].

The basic physical mechanism behind the QCSE is illustrated in Fig. 1.15(a). A

quantum well is formed when a thin semiconductor layer is sandwiched between two

layers of a di↵erent semiconductor with higher bandgap. Provided the two materials

have a so-called type I band alignment, both the electron and hole wavefunctions will

have confined states inside the quantum well. In the absence of an electric field, the

In the presence of an electric field, the conduction 
and valence bands of a semiconductor tilt. 
Application of an electric field leads to overlap in 
valence and conduction band wave functions, and 
hence optical absorption, at energies below the 
semiconductor bandgap. 
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S. Gupta…...............K. Saraswat, OFC, Los Angeles, Paper No. Tu2A.4, March 2015
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Ge/SiGe Quantum Well Modulator

SiGe Optical Modulator

• QCSE in Ge quantum wells on Si substrates
– With E-field, the potential wells get tilted. 
– This changes the energy levels and reduces 

wavefunction overlap
– Reduced strength of light absorption
– Absorb at longer wavelength
– Fully compatible with CMOS fabrication

Ec

Ev
No E-field E-field

Quantum Confined Stark Effect Ge/SiGe

Harris and Miller Groups (Stanford)
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Mach-Zehnder silicon waveguide modulator

CHAPTER 1. INTRODUCTION 19

Figure 1.11: (a) Top view of an asymmetric Mach-Zehnder silicon waveguide modu-
lator. (b) Cross-sectional view of the PN junction waveguide phase shifter fabricated
from a silicon on insulator wafer. (From [56]).

A. Liu, et al., Opt. Express 15, 660 - 668 (2007).

• A Mach-Zehnder interferometer is 
a waveguide-based device where 
the mode is split into two arms of 
the interferometer. An electric field 
applied to one of the arms 
changes the refractive index, 
which shifts the relative phase of 
the two propagating waves such 
that they constructively or 
destructively interfere at the 
output.

• Large size, several hundred µm
• High power consumption ~ 5 pJ/bit
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Silicon micro-ring modulator

CHAPTER 1. INTRODUCTION 21

Figure 1.12: Silicon micro-ring modulator based on carrier injection. Left: top-down
and cross-sectional diagrams of the ring resonator structure, showing waveguide and
doping positions. Right: typical voltage-induced spectral shift achieved from this
device. Right, inset: transmission versus voltage at a fixed wavelength indicated by
the dotted line on the larger plot (figure adapted from [55]).

representative recent devce operates at 25 Gb/s and has a footprint ⇡ 400µm2 and

modulation energy of 7 fJ/bit [59]. However, because the plasma dispersion e↵ect

is weak, the quality factor (Q) of micro-ring modulator resonators must be quite

high, in the thousands or 10,000s. This means that the linewidth of the resonance is

fractions of a nanometer. It is impossible to fabricate the micro-rings with su�ciently

precise dimensions to hit a target wavelength, so thermal tuning of the rings must

be employed to shift the resonance to the desired wavelength, and to stabilize it in

the presence of changing room temperature, etc. This thermal tuning power can be

quite substantial, and is typically much larger than the switching energy. The device

in Ref. [59] requires 66 mW to tune over the full 12.6 nm FSR (i.e., worst case tuning

energy of 2.64 pJ/bit at 25 Gb/s). Unless the thermal tuning and the associated

control circuitry can be made significantly more e�cient (there are many e↵orts to

do so [31,60]), it may be challenging for micro-ring modulators to achieve the energy

targets outlined in Section 1.2.

G. T. Reed, et al., Nature Photon. 4, 518 - 526 (2010)

Light recirculates inside the micro-ring, where it acquires a phase that is dependent upon the refractive 
index, which is modulated by carrier depletion or other means inside a PN junction. A portion of the light is 
coupled back into the output waveguide on every pass. Destructive interference occurs at a specific 
wavelength that is dependent on the refractive index. Hence, modulation of the amplitude at the output 
waveguide can be achieved by moving the micro-ring resonance into or away from the laser wavelength.
o Weak mechanism
o High Q needed - difficult to fabricate the micro-rings with precise dimensions
o Temperature tuning takes too much power
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Summary of the Modulator Work
• Silicon photonics - A key enabling technology for future CMOS systems
• Deployment Targets

- Energy Consumption ~100fJ/bit for off chip and a few fJ/bit for global on-chip interconnects
- High enough bandwidth to match the transistor speed and end user needs
- Compact area

• This work
- Ge electro-absorption modulators (EAMs) based on Franz-Keldysh Effect (FKE)
- Demonstrated best energy-delay product for CMOS compatible modulators

Modulator
Type

3dB BW 
(GHz)

Modulator 
Capacitance 

(fF)

V Swing 
(V)

Active 
Footprint 

(µm2)

ER 
(dB)

IL 
(dB)

Optical 
BW (nm)

This work 50 10 2 24 4.6 4.1 >35
GeSi FKE [2] 34 69.6 2 40 3.8 4.8 40
GeSi FKE [3] 1.2 11 3 30 8 3.7 14

GeSi QCSE* [4] 3.5 3 1 8 3.2 15 20
GeSi QCSE* [5] 6.3 200 3 400 4 3 20

Si MZI** [6] 30 ~800 1.5 ~1500 3.4 7.1 >80
Si Ring [7] 21 ~17 0.5 20 6.4 1.2 <0.1

* QCSE – Quantum Confined Stark Effect **MZI – Mach-Zehnder Interferometer

S. Gupta,…..............K. Saraswat, OFC, Los Angeles, Paper No. Tu2A.4, March 2015
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Structure Needs for Efficient Lasing

SARASWAT GROUP. – STANFORD UNIVERSITY  

Double'Heterostructure'for'Laser'

1 

! 'Double'heterostructure'is'necessary'for'more'efficient'laser''

Heterojunction

E. F. Schubert, Light Emitting Diodes (Cambridge Univ. Press)  

For efficient laser
• Direct bandgap cavity
• Hetrojunction quantum well for carrier confinement 
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direct'
valley'

indirect'
valley'

heavy'
hole' light'

hole'

CONDUCTION'
BAND'

VALENCE'
BANDS'

• N-type doping can be used to fill electrons into the L valley upto
the level of Γ valley

• But it is difficult to heavily dope Ge n-type
• Increases free carrier absorption and auger recombination
• Inefficient light emission

Engineering Ge for light emission- Doping

free carrier absorption 

Auger recombination
Indirect recombination

Phonon
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Engineering the Ge band structure for 
light emission: Strain

Unstrained 
GeStrained Ge

>1.7% biaxial tensile strain or
> 5% uniaxial tensile strain
turns Ge into a direct bandgap 
material, making light 
emission possible

HH
k

E

Γ L

LH

direct indirect 

Γc"

Lc 

Biaxial Tensile Strain 

direct 

indirect 

Γc"

Lc 

Uniaxial Tensile Strain 

Sukhdeo,…....... Saraswat, Photonics Research, 2014 
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Geometrical Amplification of Strain

Ge in biaxial tension
0.2%

Ge 
OxSi

a. GOI sample

Ge (0.2%)Ox

Si

b. Pattern Ge c. Under-etch oxide

Si!

Ge!

SiO2 Pad!

Highly strained!
Ge wire!!

Strained Ge 
pads pulling Ge wire!

Wire Width 
~200 nm

1 µm 

Direct Bandgap Cross-Over
Raman measurements

Nam, Saraswat, et al., Nano Letters, June 11, 2013. 
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Heterostructure in a Single Material: Strained Ge

Nam, Saraswat, et al., Nano Letters, June 11, 2013. 

§ Strain can be tunable with geometry
§ Heterostructure created due to reduction in bandgap of strained Ge
§ Direct bandgap cavity and hetrojunction quantum well in single material
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Ge nanowire
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40

Engineering the Ge band structure by alloying with 
tin for GeSn CMOS and photonics

Strain engineering in FinFETs

5.65 Å

6.49 Å

5.43 Å

At ~ 7 Sn% Ge1-xSnx becomes direct band gap!

Si-compatible Laser

3-D IC:  CMOS, Photonics co-integration

Si CMOS

3D Co-Integration of Logic & Photonics
Laser/Modulator

2nd Layer 
CMOS

Photodetector

Conventional 
BEOL

Si

GeSn

Strained GeSn
wire!

Remaining 
Oxide

k

L
Γ

LH

E

HH

Ge Snx1-x

Gupta, Yeo, Takagi, Saraswat, et al., 
MRS Bulletin, Aug 2014
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§ A combination of alloying Ge with Sn and strain can also give us 
a direct bandgap material
– Efficiency would be comparable to present III-V lasers

Multiple Knobs to Turn for Direct-Gap: Strained GeSn

Gupta, Magyari-Köpe, Nishi, Saraswat, J. Appl. Phys. 113, 073707 (2013)
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 Direct Bandgap GeSn Microdisk Lasers at 2.5 µm for Monolithic Integration  
on Si-Platform 
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Abstract 
We report on the first experimental demonstration of direct 
bandgap group IV GeSn microdisk (MD) lasers (!em=2.5 µm) 
grown on Si(001). The evidence of lasing is supported by a 
detailed analysis of strain-dependent emission characteristics 
of GeSn alloys with xSn " 12 at.%. Residual compressive 
strain within the layer is relieved via under-etching of the MD 
enabling increased energy offsets up to EL-EΓ=80 meV. The 
lasing threshold and max. temperature amount to 220 kW/cm2 
and 135 K, respectively.  

Introduction 
The demonstration of optically pumped lasing in 
CMOS-compatible group IV GeSn alloys [1] along with 
recent progress in optical detection [2] and fiber transmission 
at 2 µm represent a major step towards the creation of a fully 
integrated electronic and photonic circuitry [3] extending 
Si-based optical communications into the short-wavelength 
infrared region (SWIR: 2 – 3 µm) [4]. The creation of a direct 
bandgap GeSn laser which is compatible with mature Si 
electronics allows further functional integration and 
realization of energy efficient data communication networks, 
trace-gas sensing and fast medical diagnostics. Two types of 
resonators are considered for monolithic integration on a Si 
platform: Fabry-Perot (FP) and microdisk (MD) resonators. 
Lasing was demonstrated using FP waveguide cavities [1]. 
Yet, MD laser cavities supporting whispering gallery modes 
(WGMs) are attractive due to their simple device structure, 
high quality factors and small footprint. 
Here, we present the fabrication of direct bandgap group IV 
MD lasers based on residually compressively strained 
GeSn/Ge/Si heterostructures. The GeSn MDs are undercut 
using an anisotropic dry-etch process in order to enhance the 
optical confinement compared to the first generation of GeSn 
lasers [1]. Moreover, this optimized cavity design facilitates 
strain relaxation of the GeSn epilayers and, thus, increases the 
energy offset between the Γ- and L-valleys as well as the 
electrical confinement. The influence of strain relaxation on 
the band structure of GeSn as well as optically pumped direct 

gap GeSn MD lasers are presented.   
Layer Growth and Characterization 

GeSn layers with xSn between 12 at.% and 12.5 at.% and 
varying thicknesses were grown on Ge-buffered Si(001) 
virtual substrates (Ge-VS) [5] using an industry-compatible 
200 mm reduced pressure chemical vapor deposition 
(RP-CVD) tool with showerhead technology [6] at growth 
temperatures of 340-350°C [7] (Table 1). Although these 
direct bandgap GeSn layers are partially strain relaxed, they 
exhibit exceptionally high crystalline quality substantiated by 
transmission electron microscopy (TEM) imaging and ion 
channeling/Rutherford backscattering (RBS) measurements 
(Fig. 1 and Fig. 2). TEM analysis revealed a regular network 
of misfit dislocations at the GeSn/Ge-VS interface. This 
indicates plastic strain relaxation via propagation of misfit 
dislocations rather than Sn precipitation, which was not 
observed. Above the GeSn/Ge interface, the epilayers are 
single crystalline with a low density of threading dislocations 
(106-107 cm-2). In addition, the minimum yield value, χmin, of 
6 % - as determined for sample D with a layer thickness of 
560 nm - evidences high structural quality and complete Sn 
substitutionality. Fig. 3 shows the band extrema for a 
Ge0.875Sn0.125 layer as a function of biaxial compressive strain 
obtained via 8x8 band k·p calculations including strain effects 
[8]. At approx. -1.0 % compressive strain, the transition to a 
fundamental direct bandgap semiconductor occurs. Moreover, 
the bandgap shrinks with decreasing compressive strain for 
direct bandgap Ge0.875Sn0.125 alloys. These theoretical 
predictions are experimentally verified using 
temperature-dependent photoluminescence (PL) 
measurements (Fig. 4 and Fig. 5). We observed a strong PL 
emission peak at room temperature, which is attributed to 
electron-hole recombinations at the center of the Brillouin 
zone (BZ) (Γ-valley) and steadily increases for decreasing 
temperature (c.f. sample D shown in Fig. 4). This behavior is 
reminiscent to semiconductors with a fundamental direct 
bandgap [1]. An identical behavior was found for samples 
B-D as is summarized in Fig. 5. In contrast, the integrated PL 

IEDM15-362.6.1978-1-4673-9894-7/15/$31.00 ©2015 IEEE
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• Reduce Chip footprint
Ø Improved form factor
Ø Interconnect length ⇓ and therefore R, L, C ⇓

– Delay reduction
– Power reduction
– Higher bandwidth

• Integration of heterogeneous technologies possible, 
e.g., memory & logic, sensors, optical I/O 
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• 2.5D packaging (mature technology)
– Wire bonded
– Bump
– vertical interconnect density < 20/mm or 400/mm2

• 3D bonding/TSV (emerging technology)
– Die stacking
– wafer stacking
– vertical interconnect density < 40,000/mm2

• 3D crystallization (near future technology)
– Epitaxial growth
– Laser melting and crystallization
– Seeded crystallization
– Liquid phase crystallization
– vertical interconnect density < 25M/mm2

• 3D self assembled devices  (future technology)
– Si and Ge nanowires
– Carbon nanotubes
– Organic semiconductors 

Technology to Fabricate 2.5D/3D ICs

 
Fig. 1: Process flow of monolithic 3D integration of CNFETs with 
silicon FETs. (a) Cross-section view.  Starting with Si CMOS, a 200 
nm SiO2 inter-layer dielectric (ILD) is deposited, and vias are etched 
and filled with metal. The wafer is planarized with CMP, and a 
second ILD (SiO2) is deposited and etched back to 200 nm though 
CMP followed by an argon sputter etch. CNFET fabrication begins 
on this smoothed surface. Local back-gates are deposited on the 
wafer (Pt), followed by ALD deposition of 20 nm Al2O3 as a gate 
dielectric. CNTs are transferred onto the wafer, followed by source-
drain contacts (Ti/Pt).  (b) Process steps continued from top-view.  
Contacts to the ILVs are etched, and then filled with metal to 
connect the silicon FET to the CNFET. The final cross-section view 
is shown at the end of (a). (c) 3D schematic of final 3D CNFET/ 
silicon circuit (an inverter) (see text for IIP). 

 
Fig. 2: (a) Microscope image of CNFET/silicon CMOS wafer.  (b) 
SEM image of NMOS silicon transistor before CNFET fabrication.  
(c) SEM image of stand-alone CNFET, with CNTs bridging the 
channel.  (d) SEM image of vertically stacked CNFET over silicon 
FET.  The contacts on the silicon drain are visible under the CNFET 
metal drain pad. 

 
Fig. 3: (a) ID-VGS curves for typical NMOS silicon FET, for both 
directly after silicon CMOS fabrication (pre) and then after 
monolithic 3D integration with CNFETs (post).  Due to the low 
temperature processing, the silicon CMOS is largely unaffected. (b) 
ID- VGS curves for a typical CNFET, for both pre-metallic CNT 
removal (before), and after metallic CNTs are removed (after).  
ION/IOFF ratio after m-CNT removal is ~7600.    
 

 
Fig. 4: Monolithic 3D CNFET/silicon FET inverter.  The pull-up 
transistor is a CNFET, and the pull-down is a silicon FET. (a) Input 
and output waveform at 1 kHz, with 1V VDD.  (b) Vout vs. Vin 
transfer curve for the inverter.  (c) SEM image.  The top-layer 
CNFET and wiring are easily visible, with the silicon FET buried 
under the ILD. SEM image is taken before selective CNT etch 
removes all unneeded and mis-positioned CNTs (following IIP [10]), 
showing transfer of CNTs onto the substrate.  The transfer maintains 
both the alignment and density of CNTs [6]. (d) Schematic for the 
inverter.  CNFET is located directly on top of silicon FET. 

 
Fig. 5: Monolithic 3D CNFET/silicon FET NOR2 gate.  CNFETs 
are in the pull-up network, with silicon FETs in the pull-down. (a) 
Output voltage levels given set of inputs, with 1V VDD.  (b) SEM 
image of the NOR2 gate.  Two CNFETs are stacked on top of two 
silicon FETs. (c) Physical layout of the NOR2 gate. Metal routing 
shown within the ILD depicts connectivity for clarity. Actual wires 
are deposited above the ILD. (d) Schematic for the NOR2 gate. 

 
Fig. 6: Monolithic 3D CNFET/silicon CMOS multi-stage logic.  
CNFET inverter cascaded with silicon CMOS inverter. (a) Input and 
output waveform at 1 kHz (1V VDD, -3V VB). (b) SEM image of the 
cascaded inverters.  Two CNFETs form the first inverter on the top 
layer, and two silicon FETs form the second inverter on the bottom 
layer. (c) Schematic for the cascaded inverters. (d) Physical layout of 
the cascaded inverters.  Metal routing shown within the ILD depicts 
connectivity for clarity.  Actual wires are deposited above the ILD. 
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3D Approaches:  Wafer Bonding 
Source: Craig Keast (MIT Lincoln Labs) 

Invert, align, and bond Wafer-2 to Wafer-1

Remove handle silicon from Wafer-2, etch 3D

vias, deposit and CMP tungsten interconnect

Invert, align, and bond Wafer-3 to Wafer-2/1-
assembly, remove Wafer-3 handle wafer

Starting Wafers

KeyKey Challenges: Challenges:  Precise alignment of wafers/dies
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3D Wafer-level Camera Technology

Courtesy: M. Feldman, (Tessera)
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Digital Light Projection (DLP)

Photo courtesy of Texas Instruments
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Monolithic 3D Integration of Si MOSFETs with 
RRAMs and CNTFETs
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Fig. 1: Process flow of monolithic 3D integration of CNFETs with 
silicon FETs. (a) Cross-section view.  Starting with Si CMOS, a 200 
nm SiO2 inter-layer dielectric (ILD) is deposited, and vias are etched 
and filled with metal. The wafer is planarized with CMP, and a 
second ILD (SiO2) is deposited and etched back to 200 nm though 
CMP followed by an argon sputter etch. CNFET fabrication begins 
on this smoothed surface. Local back-gates are deposited on the 
wafer (Pt), followed by ALD deposition of 20 nm Al2O3 as a gate 
dielectric. CNTs are transferred onto the wafer, followed by source-
drain contacts (Ti/Pt).  (b) Process steps continued from top-view.  
Contacts to the ILVs are etched, and then filled with metal to 
connect the silicon FET to the CNFET. The final cross-section view 
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metal drain pad. 

 
Fig. 3: (a) ID-VGS curves for typical NMOS silicon FET, for both 
directly after silicon CMOS fabrication (pre) and then after 
monolithic 3D integration with CNFETs (post).  Due to the low 
temperature processing, the silicon CMOS is largely unaffected. (b) 
ID- VGS curves for a typical CNFET, for both pre-metallic CNT 
removal (before), and after metallic CNTs are removed (after).  
ION/IOFF ratio after m-CNT removal is ~7600.    
 

 
Fig. 4: Monolithic 3D CNFET/silicon FET inverter.  The pull-up 
transistor is a CNFET, and the pull-down is a silicon FET. (a) Input 
and output waveform at 1 kHz, with 1V VDD.  (b) Vout vs. Vin 
transfer curve for the inverter.  (c) SEM image.  The top-layer 
CNFET and wiring are easily visible, with the silicon FET buried 
under the ILD. SEM image is taken before selective CNT etch 
removes all unneeded and mis-positioned CNTs (following IIP [10]), 
showing transfer of CNTs onto the substrate.  The transfer maintains 
both the alignment and density of CNTs [6]. (d) Schematic for the 
inverter.  CNFET is located directly on top of silicon FET. 

 
Fig. 5: Monolithic 3D CNFET/silicon FET NOR2 gate.  CNFETs 
are in the pull-up network, with silicon FETs in the pull-down. (a) 
Output voltage levels given set of inputs, with 1V VDD.  (b) SEM 
image of the NOR2 gate.  Two CNFETs are stacked on top of two 
silicon FETs. (c) Physical layout of the NOR2 gate. Metal routing 
shown within the ILD depicts connectivity for clarity. Actual wires 
are deposited above the ILD. (d) Schematic for the NOR2 gate. 

 
Fig. 6: Monolithic 3D CNFET/silicon CMOS multi-stage logic.  
CNFET inverter cascaded with silicon CMOS inverter. (a) Input and 
output waveform at 1 kHz (1V VDD, -3V VB). (b) SEM image of the 
cascaded inverters.  Two CNFETs form the first inverter on the top 
layer, and two silicon FETs form the second inverter on the bottom 
layer. (c) Schematic for the cascaded inverters. (d) Physical layout of 
the cascaded inverters.  Metal routing shown within the ILD depicts 
connectivity for clarity.  Actual wires are deposited above the ILD. 
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Future Systems will Require Heterogeneous 
Integration on a Si Platform
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Technology Progression
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Conclusion

☹ Cu resistivity increases as technology scales down. This 
will be a bottleneck of future high-performance chip. 

☺ CNTs have a significant advantage over Cu wires 
especially for local interconnects

☺ Optical links have smallest latency and energy per bit for 
longer  global interconnects requiring higher band width

☺ 3D heterogeneous integration will keep the Moore’s law 
going for awhile.
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