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plotted versus 2 hyperangles

Quantum Hall problem

Chris Greene, Kevin Daily, Bin Yan,
and Rachel Wooten, Purdue

In this talk:

>Phys. Rev. B 92, 125427 (2015) Rachel Wooten

Formulate the 2D system of electrons
on the plane in a B-field using collective
hyperspherical coordinates

Bin Yan
Show a correlation between

fractional quantum Hall states and
states of exceptional degeneracy

Wild, unrestrained speculations on
future directions for this line of research
will be offered...







From few to many — How can we understand the
universality?
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Extensions of Universal Efimov Physics
to N>3 Bosons in 3D



Fermi Systems in Nature

e Condensed matter physics:
— Electrons in a crystal.
— Fractional quantum Hall effect
— Cooper pairs.
— High T_ superconductivity.

* Nuclear physics/astrophysics:
— Low density neutron matter (inner crust of neutron stars).

e Atomic physics:
— Composite fermions (atomic gas).
— Essentially no impurities.
— Control of interaction strength and confinement.
— Opportunity to study few-body and many-body physics.



The Fractional Quantum Hall Effect

J. P. EISENSTEIN AND H. L. STORMER
SCIENCE, VOL. 248 1990 -
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Fig. 2. Composite view showing the Hall resistance Ry and longirudinal
resistance R of a 2-D electron gas versus magnetic field. The diagonal dashed
line passing through the Ry trace represents the classically expected Hall
resistance for this sample. For each of the plateaus in Ry there is an
associated minimum in R. The numbers give the value of p/g determined

: . : . from the value of Ry on the plateaus. While some of the p/q values are
Fig. 1. A rtypical Hall bar sample. The structure is formed by chemically . | H = - : - cul «
etching away unwanted material. The dotted line indicates the 2-D electron integers, the great majority are fractions. Note in parti the *1/3 state” at

. . \ . . the far right. This most prominent example of the fractional quantum Hall
gas at the interface between gallium arsenide (GaAs) and aluminum gallium A - ~ 3
arsenide (AlGaAs). The magnetic field B and electrical current I are shown, Sicct exhubits a Hall plateau at Ry = (hie®)/(1/3) = 3h/e’.
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Microscopic origin of the fractional QHE states
Can they emerge systematically without guessing
wavefunctions?

What are quasi-particles?
How many electrons make up a quasi-particle, and how do their
fractional charge and unusual statistics emerge?

Do properties of the non-interacting 2D free electron gas with no interactions
determine whether a given filling factor yields a measurable FQHE state?

Whereas the full many-body Schroedinger equation is a linear PDE, many-
body treatments such as mean-field theory are nonlinear. How can this linear
< -2 nonlinear relationship be understood more deeply?

Since the FQHE is heralded as the prototype STRONGLY CORRELATED
SYSTEM, can insights emerge from describing the system in COLLECTIVE
COORDINATES rather than as independent electrons?



Physics is often about exploring phenomena from different
points of view, i.e. different TOOLKITS. One example is the
“few-body hyperspherical toolkit”

First of all, note that there have been many notable successes
of hyperspherical coordinate treatments by Macek, Fano, Lin,
and others, especially in the Fano school:

Fano Group PhD theses using hyperspherical coordinates:
Ravi Rau, 1971

Ch”_Dong Lm’ 1974 These followed and built to some
C H Greene, 1980 extent on the formulation
Shinichi Watanabe, 1982 developed initially by Joe Macek,

- a project started when he was
\I;/“ﬁhasl r(}:angggzel‘O, 1984 Fano’s postdoc in the late 1960s.
onn bonn,

Some recent successes also include the treatment of 3-body and 4-
body recombination processes and Efimov physics (CHG, Physics
Today 2010)



Some successes of the adiabatic
hyperspherical representation:

1. Prediction that the Efimov effect should be observable
using variable scattering lengths that can be
controlled for ultracold atoms

2. Extensions of Efimov physics to describe universal
states and recombination processes for 4 bosonic
atoms

3. Treatment of the few-body systems that arise in the
BCS-BEC crossover problem for a fermionic gas with
two spin components (e.g. dimer-dimer and atom-
dimer scattering properties)

4. Many-body applications to macroscopic numbers of
bosons in a Bose-Einstein condensate, or fermions in
a degenerate Fermi gas.

Many PhD students and postdocs have contributed to these developments:
Hossein Sadeghpour, Brett Esry, Jim Burke, Jose D’'Incao, Jia Wang, Doerte
Blume, Seth Rittenhouse, Javier von Stecher, Viatcheslav Kokoouline, and at
Purdue: Kevin Daily, Rachel Wooten, Bin Yan, Jesus Perez-Rios



Strategy of Macek’s adiabatic hyperspherical representation:
convert the partial differential Schroedinger equation into an
infinite set of coupled ordinary differential equations:
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Joe Macek’s (1968 JPB) adiabatic
hyperspherical picture gave insight into why
only one series of autoionizing states is seen

In He photoabsorption near the n=2
threshcld, instead of three.
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Figure 1. Graphs of — U, (R)/R? against R for *S®, %S¢, iP° and °P¢ cases. The Oth
curve (ground state) is not shown. Positions of the lowest member of the Rydberg
series of autoionizing states for each curve are marked by a horizontal line,



Table &

Doubly excited states of He below the N = 2 hydrogenic threshold

Figure 1. Graphs of — U, (R)/R? against R for *S®, 3S®, 'P° and °P° cases. The Oth
curve (ground state) is not shown. Positions of the lowest member of the Rydberg

series of autoionizing states for each curve are marked by a horizontal line,

— — —_ Table 9
Complex rotation [72] Feshbach projection [24] Doubly excited resonances of He below the N =2 He" threshold
Experiments®
-E.Ry) TRy -E.Ry)  T'(Ry) =
Complex rotation*  Hicks and Comer Gelebart et al.
ISe(1)  1.55574 0.00908 155607 0.00919 (7 [140] [141]
'$°(2)  1.243855 0.000432 1.24388 0.00049 E,
18°(3) 1.17985 0.0027 1.17984 0.00285 ;gm 57.848 57.;3;:3.3 ;;.gzg.gg
(1) 58.321 58.30%0. 29+0
ISe4)  1.09618 0.00009 1.09616 0.000177 A S P P
15(2) 62.092 62,06+ 0.03 62.10=0.03
'P(1) 138627 0.00273 1.38632 0.002668 ;ﬁg)} P Pyt 63062003
:P"{Zl 1.194149 _ 1.19414 8.56% 107 o 3,668 6365 0,03 Ho=R
|${3] 1.1280 0.0006 1.12786 0.000735
4 109385 r
{ ] 'S‘[l) 0.1235 0,138 £0.015 0.138+0.015
N 3pY(1) 0.00808 <0.015 =001
PL) 1.5209935 0.000394 1.52098 0.000654 1pY(1) 003714 0,042 0018 0.041 + 0,009
P2) 1.16930 0.00016 1.16925 0.0001919 15(3) 0.0367 0.04120.010- -
T -'E!
ij{ﬂ] 1.15806 1.15801 3.39% 10 *Resonances are measured from the ground state of helium atom (E=
Pd) 1.09768 ~5B0T4ARTSRy). The infinite rydberg (1 Ry = 13608826 €V} was-wsed—for-energy—
e conversion.
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Universality, from nuclear scale
energies to the chemical
Adiabatic potential curves for n+n+p,
in collaboration with Alejandro

Kievsky and Kevin Daily, nuclear
physics on 10° eV scale (FBS 2015)
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Adiabatic Energy versus hyperradius
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3-atom hyperspherical
potential curves for
He+He+He on a 103 eV
scale, looks very similar to
the 3-nucleon potentials

Extensively used to
understand universal
Efimov physics



Here is our Hamiltonian, which we recast into hyperspherical
coordinates in the usual way:

H= Z( ﬂ"?“ —?ﬂu. r) Z{mf

For a system of N atoms, with equal masses, one can define M=Nm to be
the total mass, and the kinetic energy operator then looks like:

— R ( 1 pIN-1 s, !&2) Here the hyperradius is defined as:
M \ R®N-19R )R  R? 1/2
e = (Y r2/N)Y

The adiabatic hyperspherical treatment treats the
hyperradius R initially as an adiabatic coordinate like in

Born-Oppenheimer theory, i.e. we diagonalize the H
operator with R held fixed.



Some “prehistory” — hyperspherical BEC theory — many bosons

PHYSICAL REVIEW A VOLUME 58, NUMBER 1 JULY 1008

Effective potentials for dilute Bose-Einstein condensates _ _
Fermi’s pseudopotential
John L. Bohn* B. D. Esty.” and Chris H. Greene I
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I — K-Harmonic Maodel
N Hartreg-Fock Approximation
s Thomas-Fermi Approximation

Energy/ Atom - 32 (oscillator units)
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FIG. 2. Companson of the K-harmonic, Harfree-Fock, and
Thomas-Fermi estimates of the ground-state energy, for a conden-
sate with a= 100 bohr, and trap frequency »=200 Hz. The energy
E 15 plotted 1n the form £, /N—3hv/2, to emphasize the confribu-
tion of the energy beyond that in the noninteracting case.
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Effect of renormalization on the adiabatic hyperspherical potential curve for
a 2-component degenerate Fermi gas, in the large N limit:

Va(R)/Eag Pot. curve for the bare, noninteracting oscillator
Renormalized pot. curve with interactions,
3t ! showing that collapse no longer occurs at
kra = =3
2
0 NL e
=" — Unrenormalized potential
et curve showing collapse
: -
0.5 / 1 1.5 2
/
/ if we set C' = —1.39, which is approximately Javiers negative unitarity limit, we have that
-1* / -1 & 11 0.2462
Hett = sp @ mare Ve Yok
B -1 #0254 1 e
= 2B (R, dR2 T RZ T3
FIG. 1: The non-interacting effective potential curve (dotted), and the effective potential curves for kra = —3 for the bare

scattering length (dashed) and the renormalized effective scattering length (solid).



SINGLE PARTICLE HAMILTONIAN

Back to the quantum Hall problem: ~Phys. Rev. B 92, 125427 (2015)
1 2
H = (—ihV +eA)” A = (B/2)(—yx + 7))

2m,

2 _o e’B? 5, eb
H=—-—5—V"+ 7 +y°) + L.

2m, 8m, ( y7) 2m.,
E) — é (2n+m + |m|+ 1) € Single particle energy levels
Frequency: Length:

Natural magnetic units L ﬁ
we use throughout: WwWe — EBJ'HI “nf] f}"-ﬂ —

T W -
Energy: |1~
1 1 | LE 1 1 Note: differs only by a
H=—-—-{-0rd — == 4+ p? g — [, < constantfrom a

21r B2 ~ 2h particle in a 2D trap
with B=0!




gingle electron radial potential energy curves, m=0, -1,...-10
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Lowest 11 single-electron potential curves for an electron moving in
two dimensions with a B-field transverse to the plane



N-BODY RELATIVE HAMILTONIAN

Now go to collective N-body coordinates

rel Ill"l']'cl

m]___zvﬁ

_j 1

The 4 relative Jacobi vectors that
characterize a 5-particle system in 2D:

1 -

1
P2
3
P4
PCM

1 ra
Z{:t —I—yj)—l-zﬁZL |

1 1 Ill""r-el
_ (?) < N-body reduced mass

Hy = Heym + Hygl
I"""rc:-]

Nigg=N —1

3=1

d=2N-2
dimensional
space, symmetry
group is O(2N-2)

Linear transformation matrix
between the independent particle
coordinates and the Jacobi
relative+CM coordinates:

4/5 .
VEx 1 1 1 1)
™
RISt M S A I P
1/2 T
“ o 0 1 =1 0 3
Vo ! ale
1.“ ; X ‘[J. -1 0 0 D} Ts

\ Ix {11 1 1 1}/



Hvperspherical coordinate transformation

puimil  pama|  pslmal  pw, 1. Mu, ]

Ra,K; <The “Jacobi Tree” used to
define the hyperangular
coordinates

And the squared hyperradius IS

cos ‘ defined by ;
7 2 Z P
E/E k—1 IFJF:
tan ﬂj’ — ' This can be deflned for
541 any N-particle problem,

and it is proportional to
the trace of the moment
of inertia tensor.

arxXxiwv:1504.0788
|
Phys. Rev. B 92, 125427 (2015)



non-interacting relative Hamiltoman

In hyperspherical

coordinates: 1 , I 1
H... — __v;* + _R.E_|__ch-] Lot
T g T RE2TRT T o
V., = . OpR2Ne—1g,, _ _ﬁ’ﬂ
R!ﬂ o _E"E-'h'"rml_l R R RE

o

K 1s called the grand angular momentum operator

The eigenstates of K2 are the hyperspherical harmon-

ics, @ [M {ﬂ], where

K23 (Q) = K(K + 2N — 2)3' ()

The final guantum number K here is called the “grand angular
momentum quantum number”, K = |M|, [M[+2, [M|+4, ....



Iar}.’.iv:lE-l:I&.Cl'?EE
Now apply this adiabatic
hyperspherical method to the
quantum Hall problem

Jr:uh B -“'lr"c:'!::u
eB~ BA

How to define the “filling factor”

AT 2
_ ) {RE} ] - |:.'1|"r — 1}'?’{_.
¢p = h/e in S.1. units - INTe — 2“
fundamental flux quantum
Typical GaAs o 11 —2 R
e density: 1 — 2.4 % 10" em N(N —
= —
2K

the v = 1 quantum

Hall state is found at a m: ignetic field near B = 10T and
the v = 1/3 state occurs around the much higher field

B = 29T,

=HYPERSPHERICAL
FILLING FACTOR



Potential energy curves for N noninteracting electrons in 2D in a B-field
as a function of the hyperradius

2,uR~ 8
Antisymmetrization has been carried out, and \ This term vanishes if

L‘rg;m; (R) = 2 4 Lﬂd—

most curves shown are hlghly degenerate no Coulomb
— . Interactions. These C

[ 1 ———

[ \ \ Potentlal curves for N 3 \ are eigenvalues of the
LI energy versus R in Coulomb interaction
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- Ey=0.hw, M|
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A non-FQHE state
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K=-M=9

3 particles

The Laughlin 1/3 state emerges for this symmetry,
because the jump in degeneracy from 1 to 2 allows the
system to minimize the Coulomb repulsion effectively
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K=-M=10 3 particles

A non-FQHE state
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Total degeneracy of unsymmetrized N-particle states with K=-M

The Laughlin 1/3 state is one
degen. of these’ having <622,614,630 unsymm. N=8

107 K =-M =3N(N-1)/2
. / <1,344,904 unsymm. N=8
The integer quantum

Hall state is one of
these, having

K = -M =N(N-1)/2

3« s s 7 & N

Degeneracy of antisymmetric N-particle states with K=—M

<Number of degenerate states
left after antisymmetrizing

1000+

Laughlin v=1/3 FQHS K=3N(N-1)/2 is one linear
combination of these degenerate states, having

100}
B smallest repulsive Coulomb eigenvalue Cyy,

10}
Integer QHS v=1, K=N(N-1)/2= -M

5 <)

3 2 5 6 7 s N




_N=3, M=-9, k=0 ——. Noninteracting states for

! V K=|M|=9,11,13,15,..., corresponding
4; to LL = 0,1, 2,3, ... resp.
I ]
I Mon-interacting three-body system in magnetic units.
3; 3 * shows Single—partiéle energy spacing
E i « each potential supports an infinite number of bound states
‘:‘3; ol * location of minima indicate "size” of bound state |
: K9 Single particle S ! \
1T hyperangular Landau spacing | :
[ quantum number
ok .
0 2 4 6 8 10 12 14
R/Aq
Weakly-interacting three-body system in magnetic units.
+ colored to distinguish different K-manifolds
« shows single-particle energy spacing is larger than that of interactions
N=3 + indicates K-manifolds are, in general, degenerate

Single particle
Landau spacing

N A ]

 Splitting dueto % | The lower hyperangular
weakinteracons 7= wavefunction here has a 99%

0 2 4 6 8 10 12 14 overlap with the 1/3 Laughlin wfn



Now look at some quantitative measures of accuracy for the
hyperspherical method, compared with others:

PHYSICAL REVIEW B VOLUME 27, NUMBER 6 15 MARCH 1983

Quantized motion of three two-dimensional electrons in a strong magnetic field

R. B. Laughlin
University of California, Lawrence Livermore National Laboratory, Livermore, California 94550

We have found a simple, exact solution of the Schrodinger equation for three two-
dimensional electrons in a strong magnetic field, given the assumption that they lie in a sin-
gle Landau level. We find that the interelectronic spacing has characteristic values, not
dependent on the form of the interaction, which change discontinuously as pressure is ap-
plied, and that the system has characteristic excitation energies of approximately 0.03e?/a,,

where a; is the magnetic length.
3386 R. B. LAUGHLIN 27

TABLE L. Coulomb matrix elements across the states | m,n ) defined by Eq. (18) in units of (3/V2)/(e%/a,). Quan-

tum numbers m,n are indicated in parenthesis. M =3m +2n is the total angular momentum. There are no states of
M=0,1,2,or4.

M=3 (1,0) 5.6790797 x 10! _ . : : :
M=5 (1,1) 4.9783743 % 10~! Next, Laughlin diagonalizes this matrix,
ﬁ=$ {'f’? ﬁ?': g;gx:g:: i.e. applies degenerate perturbation

Mg 1 4013073010~ theory in all coordinates

M =9 (3,0) 3.401 7834 10~ 130614011072 e

(1,3) 1.306 1401 x 10— 4.0872620x 10"



TESTING ADIABATICITY

Comparison of energy level calculations in the adiabatic
hyperspherical approximation with the Laughlin method
(1983 Phys. Rev. B first row) which does degenerate
perturbation theory in all degrees of freedom

| N M 3.9 3.15 4.18 5.30

|1 AE. Perturbation Theory 0.716527 | 0.55248 | 1.30573 | 2.02725
2 AE.Degenerate fixed-X 0.704637 | 0.54792 | 1.28552 | 1.99742
3 \E, Born-Oppenheimer (lower bound®) | 0.70198 | 0.54722 | 1.28086 | 1.99226
'4 AFE. Adiabatic (upper bound) 0.70204 | 0.54723 | 1.28092 | 1.99230

Row 1. degenerate perturbation theory in all coordinates (as in Laughlin, 1983,
PRL; agrees with his numbers to all 8 digits; and Jain et al. 2006 arXiv for N=4,5)
Row 2: degenerate perturbation theory in the hyperangular degrees of freedom
only, followed by exact solution in R

Row 3: full Born-Oppenheimer calculation, treating R adiabatically, giving lower
bound (if converged) to the ground state energy

Row 4: full adiabatic approximation including repulsive “diagonal correction
term” (d*2/dR"2), giving an upper bound to the ground state energy



Semiconductor quantum dots in high magnetic fields

At our crudest level of approximation, we

The composite-fermion view

also find exact agreement with calculations

Gun Sang Jeon!'?:®, Chia-Chen Chang', and Jainendra K. Jain' by Jain et al.
Table 3. Comparison between the CF and the exact energies (Vop and Voy ) for N = 6.

L D D% V. Vor L D D% Vi, Vor L I DF Vs Veor L D D% Ve Vor

19 5 14.52568 4.52563(84) 52 2702 10 2.69635 2.70122(14) 85 38677 1 2.06506 2.06020(9) 118 216705 0O 1.75766 1.76108(13)
20 T 14.39138 4.39214(47) 53 3009 5 2.66882 2.67239(64) &6 41134 5 2.06506 2.06011(12) | 119 226479 3 1.74584 1.75185(20)
21 11 14.26439 4.26485(31) 34 3331 2 2.63071 2.63357(25) &7 43752 2 2.05433 2.05522(17) | 120 236534 1 1.73124 1.73566(10)
22 14 34.26439 4.26557(67) | 55 3692 1 2.58540 2.58872(13) | 88 46461 9 2.04622 2.04944(24) | 121 247010 3 1.73124 1.73575(13)
23 20 2415579 4.15623(25) 36 4070 5 2.58541 2.58807(20) 20 49342 3 2.02791 2.03308(20) | 122 257783 B8 1.72727 1.73012(18)
24 26 14.055414.05721(58) | 57 4494 2255188 2.55252(31) | 90 52327 1 2.00538 2.00052(20) |123 269005 2 1.72031 1.72323(11)
25 35 13.921523.92355(10) | 58 4935 0 2.54880 2.55221(22) | 91 55491 3 2.00538 2.00969(35) | 124 280534 4 1.70935 1.71436(23)
26 44 3 3.00771 3.00868(73) | 50 5427 32.51327 2.51647(68) | 92 58767 8 1.99803 2.00142(44) | 125292534 1 1.69562 1.69987(6)
27 58 23.709370 3.79420(72) | 60 5942 1247124 2.47423(27) | 93 62230 2 1.98517 1.98615(10) | 126 304865 2 1.69562 1.69984(3)
28 71 53.793703.70447(20) | 61 6510 32.47124 2.47420(61) | 94 65827 4 1.97151 1.97625(13) | 127 317683 5 1.69191 1.69581(16)
20 90 23.69040 3.60200(92) | 62 7104 8 2.458352.45008(31) | 95 69624 1 1.95061 1.95405(22) | 128 330850 0 1.68552 1.68000(11)
30 110 13.56719 3.56824(40) | 63 7760 2 2.42388 2.42431(35) | 96 73551 21.95061 1.95514(20) |129 344534 1 1.67503 1.68120(11)
31 136 33.56264 3.56580(66) | 64 8442 4240047 2.41278(12) | 97 77695 5 1.94470 1.94832(11) | 130358579 2 1.66210 1.66513(14)
32 163 73.52032 3.53013(84) | 65 09192 12.37120 2.37547(20) | 98 81979 0 1.93471 1.93824(39) | 131 373165 4 1.66210 1.66519(27)
33 199 23.41858 3.41952(30) | 66 9975 22.371202.37513(14) | 99 86499 1 1.91800 1.92278(10) | 132 388138 7 1.65863 1.66131(18)
34 235 43.40210 3.40435(61) | 67 10820 5 2.35051 2.36237(52) | 100 91164 2 1.90010 1.90348(12) | 133 403670 12 1.65264 1.65522(33)
35 282 1 3.28042 3.20204(19) 68 11720 0 2.34182 2.34476(24) | 101 96079 4 1.90010 1.90329(29) | 134 419609 18 1.64273 1.64584(15)
36 331 23.28587 3.20004(28) | 6912692 1 2.30054 2.31154(17) | 102 101155 7 1.80472 1.80762(22) | 135 436140 1 1.63050 1.63876(7)
37 391 53.25002 3.26178(31) | 7013702 2 2.28245 2.28574(35) | 103 106491 12 1.88550 1.88831(53) | 136 453091 1 1.63050 1.63878(14)
38 454 93.21604 3.21752(83) 71 14800 4 2.28245 2.28624(68) | 104 111999 18 1.87118 1.87361(51) | 137 470660 2 1.62723 1.63454(7)
390 532 13.110313.11221(20) | 7215944 7 2.27230 2.27584(8) | 105117788 1 1.85328 1.86170(17) | 138 488678 3 1.62159 1.62801(1)
40 612 2 3.06846 3.07277(56) T3 17180 12 2.25596 2.25024(17) | 106 123755 1 1.85328 1.86180(13) | 139 507334 4 1.61221 1.61833(7)
41 T09 4 3.06846 3.07263(46) T4 18467 18 2.23266 2.23432(46) | 107 130019 2 1.84828 1.85551(23) | 140 526461 2 1.60064 1.60352(19)
42 811 7T 3.03681 3.03020(84) T5 10858 1 2.20188 2.20032(19) | 108 136479 3 1.83063 1.84614(12) | 141 546261 1 1.60064 1.60808(6)
43 031 12 3.00162 3.002858(91) TE 21301 1 2.20188 2.20044(22) | 109 143247 4 1.82642 1.83222(16) | 142 566547 10 1.59756 1.60028(38)
44 1057 18 2.95620 2.95640(61) TT 22856 2 2.10230 2.19868(34) | 110 150224 2 1.80078 1.81276(9) 143 587535 5 1.50225 1.59806(30)
45 1206 1 2.86015 2.86444(21) T8 24473 3 217671 2.18302(17) [ 111 157532 1 1.80078 1.81507(10) | 144 609040 2 1.58332 1.58080(9)
46 1360 1 2.86015 2.86427(33) TO 26207 4 2.15698 2.16067(26) | 112 165056 10 1.80521 1.80836(23) | 145 631269 1 1.57236 1.57642(6)

Eur. Phys. J. B 55, 271282 (2007)
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Semiconductor quantum dots in high magnetic fields

The composite-fermion view

Gun Sang Jeon!:2:® Chia-Chen Changl, and Jainendra K. Jain!

Fur. Phys. J. B 55, 271-282 (2007)
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0
From numerical “exact” Y T-lzlT=sEg
calculations, the states 3 - =528
that stand out as having _A - _-=z-=cgiEE

lower energies than their
neighboring M states are
the Laughlin-type (1/n) and
Jain-type states

(primarily).

Fig. 6. Exact energy spectrum for N = 6.
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Filling factor,v - 1/3 1/5 1/3 1/3 1/3
N,—M 3.0 3.15 4,18 5,30 6,45
AF, Haldane sphere, fit, extrapolation 0.71656 0.5526 1.310 2.04 3
AE, Planar calculations [47, 48] 0.716527 0.55248 1.3057 2.02725 2.86015
AFE, Perturbation Theory 0.716527 0.55248 1.3057 2.02725 2.86015
AFE, Degenerate fixed-K 0.704637 0.54792 1.28552 1.99742 2.81994
AF, Born-Oppenheimer (lower bound*) 0.70198 0.54722 1.28086 1.99226% -
AF, Adiabatic (upper bound) 0.70204 0.54723 1.28092 1.99230 -

Energy level calculations in our hyperspherical coordinate picture, compared
with previous calculations of quantum Hall effect pioneers Laughlin (1983 PRB)
and from Jeong, Chang, & Jain(European Phys. J B 2007)

The lower bound calculations neglect the diagonal adiabatic correction term,
which as shown by Starace and Webster ( PRA 1979) must bound each exact
energy level from below.

The upper bound calculations conform to the usual Rayleigh-Ritz variational
principle and are guaranteed to give energies higher than or equal to the exact
energy levels.

Finding: Our UPPER and LOWER bounds to the energy differ at around the 10-
5level. (In an AMO problem, the H- ground state, the difference is 1.9%). This
indicates that quasi-separability in the hyperradial coordinate is VERY good.



Potential energy landscape at fixed hyperradius for 6 particles, in a
configuration that minimizes the classical potential energy (left)

After minimization, this (right) figure shows the potential energy as the
6 particle is allowed to move throughout the plane at fixed R
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landscape seen by
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the central electron



Pauli Crystals: hidden geometric structures

of the quantum statistics
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How does fixed-node
Monte Carlo work for
fermions? Take the nodal
structure from a Slater
determinant, and then let
particles walk randomly
and diffuse.

This graph shows the
nodal structure of one
particle, in a 56-particle
spin-polarized DFG, with
the positions of 55
particles chosen randomly
and shown as small
spheres.




Minimum quantum Coulomb potential eigenvalues

for lowest K=|M| (lowest Landau level) for 6 particles,

showing their trend towards the classical minimum
potential energy (magenta point) as K increases
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Eigenenergies for 4 particles after
guantizing also in the hyperradius R
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K=-M=9 for N=3
This 1/3 Laughlin
eigenstate has a
strong peak at an
equilateral triangle
configuration,
where electrons
can stay as far
apart as possible,
minimize repulsion

K=-M=10 for N=3
This non-FQHE
eigenstate has a
deep minimum at an
equilateral triangle
configuration




Next: an exploration of the role of DEGENERACY
within each {K,M} manifold, and a conjecture

Expectation: If there are more degenerate states, then the system has more
degrees of freedom to minimize the Coulomb repulsion, and one expects that
states of unusually low energy (like the Laughlin states 1/3, 1/5, etc....) will also
have unusually high degeneracy compared to their neighbors.

Antisymmetrization of more than 5 or 6 particles is very challenging, and even
learning how to count degeneracies Is complicated, but one useful paper we
found is:

S. H. Simon, E. H. Rezayi, and N. R. Cooper, Phys. Rev. B 75, 195306 (2007).
Extending their treatment somewhat, we find a generating function can be
used to compute the number of antisymmetric states a,,,™ for given
N,|M|:

N 0
rAT T 1 (N | M| _
Govlx :J.’"l"“."_l"""j‘ - = E { X , Hint: use
N (x) l_[ 1 —xJ | M| Mathematica!
=2 M|=0

e.g. the Laughlin 1/3 state for 12 particles occurs for M=-188,
and the degeneracy of that manifold is: a,,,™ = 5,929,008



On the role of exceptional degeneracy: e.g., from group theory,

the number of antisymmetric states for 4 particles in states with K=|M|
turns out to be the following:

ME 1 e 1 2| M g (o (1M | M|
e (=M 1) M+ — {ﬁ-—l—ms{ ]—9(—1;-- [J,sm[ ]+-Ln:n5( ]+3]-1]
8 16" : 288 3 ,

3

"

%]
=
%]
=

2 1 2 1

Note: the “hyperspherical
filling factor”, which
agrees with the usual

definition for integer QHE
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Connection between the high relative degeneracy
states having known filling factors seen

experimentally and in theory (

Laughlin, Jain, etc.)
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Energy vs. Magnetic field

0.078 ¢
0.076 |
0.074 t
0.072 ¢
0.07 r
0.068

0.066 '

Devil’s staircase:

10 15 20
Magnetic field (Tesla)

Lowest energy

states:

M =15, 20, 21, 25,
27, 30, 33, 35,
39, 40, 45

Important CF states:
M=15— v=I;
M=27— v=2/3
M=33 — v=2/5;
M=45— v=1/3

High degeneracy:

M =15, 45, 39, 27, 33
(all with relative
degeneracy > 0.90)



—-M VOF HS [WEF — !ffi‘.‘-‘)
3 j : ! E Connections between
Y 1 0 hyperspherical and
1 6 1 1 0 conventional filling
2 Z L —1
; ; : - factors for known
24 2 4 FQHE states for 3,4,
30 : 0 and 6 electrons
G 15 1 1 (0
27 2 2 —10
33 2 T i
45 : < 0
57 2 = —5
75 = = 0

TABLE 1. Sample list of identified N-body guantum Hall
states in the lowest Landau level. M is the total relative
azimuthal quantum number of Laughlin and Jain states iden-
tified by exact numerical diagonalization in a spherical geom-
etry [6]. vop gives the filling factor of identified QH states
according to the Jain composite fermion picture, including a
correction that accounts for the finite size shift associated with
the spherical geometry. vy s is the calculated hyperspherical
filling factor, given by Eq.(34). The final column gives a finite
size correction to the hyperspherical filling factor.
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Energy spectrum after solving for the hyperradial vibrational
degree of freedom, as a function of magnetic field. The B-field
maghnitude correlates with the maximum hyperradius used in the
radial calculation according to the formula

Energy vs. Magnetic field
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“Devil’s Staircase” showing
lowest energy state for 6
electrons with density,
effective mass, and dielectric
constant parameters
appropriate for atypical GaAs
experiment in the fractional
guantum Hall effect.

Interestingly, the 5/13 state that
emerges from the 6 electron
calculation (M=-39) is one state in
particular that does not emerge
naturally in the Jain composite
fermion picture. On the Haldane
sphere (for experts) it corresponds to
20Q=13, with 1 completely filled
composite fermion Landau level 0 +
a partially filled Landau level 1 that
holds the extra quasi electrons,
which interact to form pairs. See
Quinn&Quinn, SSCommun 2006
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Fractional Quantum Hall Effect of Composite Fermions

W. Pan'?, H.L. Stormer®*, D.C. Tsui', L.N. Pfeiffer!, K.W. Baldwin®, and K.W. West*
' Department of Electrical Engineering, Princeton University, Princeton, New Jersey 085}
2 National High Magnetic Field Laboratory, Tallahassee, Florida 32310
3 Department of Physics and Department of Applied Physics, Columbia University, New York, New York 10027
*Bell Labs, Lucent Technologies, Murray Hill, New Jersey 0797/
(January 13, 2014)

In a GaAs/AlGaAs quantum well of density 1 x 10'" em™2 we observed a fractional quantum Hall
effect at v = 4/11 and 5/13, and weaker states at v = 6/17,4/13,5/17, and 7/11. These sequences
of fractions do not fit into the standard series of integral quantum Hall effects (IQHE) of composite
fermions (CF) at v = p/(2mp £ 1). They rather can be regarded as the FQHE of CFs attesting to
residual interactions between these composite particles. In tilted magnetic fields the v = 4/11 state

197 T~35mK 4 %% Experimental observation of
17 ¢ some states that challenge the
175 1 l? first-order composite fermion
B TP T theory, in which the CF'’s are
g % 5 noninteracting;
o ﬂ ] 3 condmat/0303429
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Breathing mode signatures of the Laughlin 1/3
state, a prediction (preliminary):
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What have we learned, what can we
conjecture, where are we going from here?

. The adiabatic hyperspherical approximation is more accurate for the quantum
Hall problem than for any other nonperturbative problem we have encountered
to date. In other words the hyperradius R is almost exactly separable from the
other coordinates in this problem

. There appears to be a very strong correlation between the {K,M}-manifolds
representing observable fractional filling factors and the “Exceptional
Degeneracy” of those manifolds. This suggests that it may be primarily a
property of the NONINTERACTING electron gas that controls whether a given
filling factor n will give a FQHE resistivity plateau

. As one looks at degeneracy patterns for more and more electrons, the
degeneracy of angular momentum M is not so different from M+2 and M-2, etc.
This suggests that possibly it could be relatively small numbers of electron
droplets that are responsible for states that stand out so noticeably in the
observed FQHE states

. Note that one outcome is that for each M, viewed as a Hilbert subspace by
itself, the eigenstates would be EXACTLY THE SAME even if there were no
magnetic field present. This means that the same states (e.g. Laughlin 1/3) can
be formed even at B=0 with charged particles in a micro-trap.



Other directions to understand:

-- origin of fractional charge carriers, anyonic
statistics, the 5/2 state, etc.

-- role and implications of entanglement and
correlations

--connection with chaos (random matrix theory,
semiclassical closed-orbit theory a la Gutzwiller,
etc.)

--conductance fluctuations in the Corbino geometry

-- predictions of novel spectroscopic sighatures?



Conclusions

1. A hyperspherical mapping provides a systematic, microscopic way
to tackle fractional quantum Hall states

2. The usual Laughlin and Jain states (and possibly others) correlate
closely with the symmetries having an exceptional degeneracy for
noninteracting fermions

3. Since these states are identifiable by a property of noninteracting
electrons, it should be possible to probe these exceptional
degeneracy states in other ways, e.g. without a magnetic field, or
with neutral, ultracold polarized fermionic (or bosonic atoms)

4. One can use the approximate separability of the hyper-radial
coordinate to predict a class of excitation frequencies, almost
trivially.

5. Further study is needed to understand more detailed properties of
the eigenstates, such as the fractional nature of charge carriers, the
nature of quasi-particles, etc.
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