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In this talk:  
• Formulate the 2D system of electrons 

on the plane in a B-field using collective 
hyperspherical coordinates 

 

• Show a correlation between  
• fractional quantum Hall states and  
• states of exceptional degeneracy 

 
• Wild, unrestrained speculations on 

future directions for this line of research 
will be offered… 
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Extensions of Universal Efimov Physics 
to N>3 Bosons in 3D 

  9            8          7       6       5      4     3      2                         

INCREASING ATTRACTION (a gets more negative)  

From few to many – How can we understand the 
universality? 



• Condensed matter physics: 
– Electrons in a crystal. 
– Fractional quantum Hall effect 
– Cooper pairs. 
– High Tc superconductivity. 

 
• Nuclear physics/astrophysics: 

– Low density neutron matter (inner crust of neutron stars). 
 

• Atomic physics: 
– Composite fermions (atomic gas). 
– Essentially no impurities. 
– Control of interaction strength and confinement. 
– Opportunity to study few-body and many-body physics. 

Fermi Systems in Nature 





Motivations   
 

Microscopic origin of the fractional QHE states  
Can they emerge systematically without guessing 

wavefunctions? 
 

What are quasi-particles?   
How many electrons make up a quasi-particle, and how do their 

fractional charge and unusual statistics emerge? 
 

Do properties of the non-interacting 2D free electron gas with no interactions 
determine whether a given filling factor yields a measurable FQHE state? 
 
Whereas the full many-body Schroedinger equation is a linear PDE, many-
body treatments such as mean-field theory are nonlinear.  How can this linear 
 nonlinear relationship be understood more deeply? 
 
Since the FQHE is heralded as the prototype STRONGLY CORRELATED 
SYSTEM, can insights emerge from describing the system in COLLECTIVE 
COORDINATES rather than as independent electrons? 

Phys. Rev. B 92, 125427 (2015) 
1983 Laughlin PRL:  
3050 citations as of 
today 



Physics is often about exploring phenomena from different 
points of view, i.e. different TOOLKITS.  One example is the 
“few-body hyperspherical toolkit” 
 
First of all, note that there have been many notable successes 
of hyperspherical coordinate treatments by Macek, Fano, Lin, 
and others, especially in the Fano school: 
 
Fano Group PhD theses using hyperspherical coordinates: 
Ravi Rau, 1971 
Chii-Dong Lin, 1974 
C H Greene, 1980 
Shinichi Watanabe, 1982 
Michael Cavagnero, 1984 
John Bohn, 1992 
 
Some recent successes also include the treatment of 3-body and 4-
body recombination processes and Efimov physics  (CHG, Physics 
Today 2010) 

These followed and built to some 
extent on the formulation 
developed initially by Joe Macek, 
a project started when he was 
Fano’s postdoc in the late 1960s. 



Some successes of the adiabatic 
hyperspherical representation: 

1. Prediction that the Efimov effect should be observable 
using variable scattering lengths that can be 
controlled for ultracold atoms   
 

2. Extensions of Efimov physics to describe universal 
states and recombination processes for 4 bosonic 
atoms 
 

3. Treatment of the few-body systems that arise in the 
BCS-BEC crossover problem for a fermionic gas with 
two spin components (e.g. dimer-dimer and atom-
dimer scattering properties) 
 

4. Many-body applications to macroscopic numbers of 
bosons in a Bose-Einstein condensate, or fermions in 
a degenerate Fermi gas.   

Many PhD students and postdocs have contributed to these developments: 
Hossein Sadeghpour, Brett Esry, Jim Burke, Jose D’Incao, Jia Wang, Doerte 
Blume, Seth Rittenhouse, Javier von Stecher, Viatcheslav Kokoouline, and at 
Purdue:  Kevin Daily, Rachel Wooten, Bin Yan, Jesus Perez-Rios 



Strategy of Macek’s adiabatic hyperspherical representation:  
convert the partial differential Schroedinger equation into an 
infinite set of coupled ordinary differential equations: 

To solve:  

First solve the fixed-R 
Schroedinger equation, for 
eigenvalues Un(R): 

Next expand the desired solution             
into the complete set of adiabatic 
eigenfunctions 

And the original T.I.S.Eqn. is transformed into the following 
set which can be truncated on physical grounds, with the 
eigenvalues interpretable as adiabatic potential curves, in 
the Born-Oppenheimer sense. 



Joe Macek’s (1968 JPB) adiabatic 
hyperspherical picture gave insight into why 
only one series of autoionizing states is seen 

in He photoabsorption near the n=2 
threshold, instead of three. 





Adiabatic potential curves for n+n+p, 
in collaboration with Alejandro 

Kievsky and Kevin Daily, nuclear 
physics on 106 eV scale (FBS 2015) 

U((R) 
MeV 

3-atom hyperspherical 
potential curves for 

He+He+He on a 10-3 eV 
scale, looks very similar to 

the 3-nucleon potentials 
 

Extensively used to 
understand universal 

Efimov physics 

Universality, from nuclear scale 
energies to the chemical 

Nuclear physics 

Atomic physics 

arXiv:1503.05978,  and 
2015 Few-Body Systems 



Here is our Hamiltonian, which we recast into hyperspherical 
coordinates in the usual way: 

For a system of N atoms, with equal masses, one can define M=Nm to be 
the total mass, and the kinetic energy operator then looks like: 

Here the hyperradius is defined as: 

The adiabatic hyperspherical treatment treats the 
hyperradius R initially as an adiabatic coordinate like in 
Born-Oppenheimer theory, i.e. we diagonalize the H 
operator with R held fixed. 



Some “prehistory” – hyperspherical BEC theory – many bosons 

Hyperspherical potential curves for bosons 

Fermi’s pseudopotential 

Spherical trap approx. 



“Critical number for bosonic collapse” 
is when: 

< -0.573 in HF/Gross-
Pitaevskii theory 



Effect of renormalization on the adiabatic hyperspherical potential curve for 
a 2-component degenerate Fermi gas, in the large N limit:  

Unrenormalized potential 
curve showing collapse 

Pot. curve for the bare, noninteracting oscillator 

Renormalized pot. curve with interactions, 
showing that collapse no longer occurs at  



Natural magnetic units 
we use throughout: 

Length: Frequency: 

Energy: 

 Single particle energy levels 

Back to the quantum Hall problem: 

Note:  differs only by a 
 constant from a 
particle in a 2D trap 
with B=0! 



r(oscillator units) 

Energy 
(oscillator units) 

Lowest 11 single-electron potential curves for an electron moving in 
two dimensions with a B-field transverse to the plane 

Potential 
energy of just 1 
2D electron in a 

B-field 

m=0,-1,-2,…-10 



 N-body reduced mass 

The 4 relative Jacobi vectors that 
characterize a 5-particle system in 2D: 

Linear transformation matrix 
between the independent particle 
coordinates and the Jacobi 
relative+CM coordinates: 

d=2N-2 
dimensional 

space, symmetry 
group is O(2N-2) 

Now go to collective N-body coordinates 



The “Jacobi Tree” used to 
define the hyperangular 
coordinates 
 
And the squared hyperradius is 
defined by: 
 
 

This can be defined for 
any N-particle problem, 
and it is proportional to 
the trace of the moment 
of inertia tensor.   

Phys. Rev. B 92, 125427 (2015) 



The final quantum number K here is called the “grand angular 
momentum quantum number”, K = |M|, |M|+2, |M|+4, ….  

In hyperspherical 
coordinates: 



Now apply this adiabatic 
hyperspherical method to the 

quantum Hall problem 

How to define the “filling factor”: 

Typical GaAs 
e density: 

=HYPERSPHERICAL 
FILLING FACTOR 



Potential energy curves for N noninteracting electrons in 2D in a B-field 
as a function of the hyperradius 

R, hyperradius in 
cyclotron units 

Potential curves for N=3, 
energy versus R in 

cyclotron units for C=0, 
NO COULOMB 

Channels associated 
with the lowest Landau 
level, K=-M=|M| 

 

This term vanishes if 
no Coulomb 

interactions.  These  C 
are eigenvalues of the 
Coulomb interaction 
within a degenerate 

K,M-space 

Antisymmetrization has been carried out, and 
most curves shown are highly degenerate 



K=-M=8          3 particles 

With Coulomb interactions 

noninteracting 

A non-FQHE state 



K=-M=9          3 particles 

With Coulomb interactions 

noninteracting 

The Laughlin 1/3 state emerges for this symmetry, 
because the jump in degeneracy from 1 to 2 allows the 
system to minimize the Coulomb repulsion effectively 



K=-M=10         3 particles 

With Coulomb interactions 

noninteracting 

A non-FQHE state 



The integer quantum 
Hall state is one of 
these, having           
K = -M =N(N-1)/2 

The Laughlin 1/3 state is one 
of these, having                     

K = -M =3N(N-1)/2 

N 

degen. 

3 

1,344,904 unsymm. N=8 

622,614,630 unsymm. N=8 

Number of degenerate states 
left after antisymmetrizing  

Integer QHS ν=1, K=N(N-1)/2= -M 

Laughlin ν=1/3  FQHS  K=3N(N-1)/2 is one linear 
combination of these degenerate states, having 
smallest repulsive Coulomb eigenvalue CKMγ  

N 



The lower hyperangular 
wavefunction here has a 99% 
overlap with the 1/3 Laughlin wfn 

Noninteracting states for 
K=|M|=9,11,13,15,…, corresponding 
to      LL  =   0, 1, 2, 3, … resp. 

N=3 



Next, Laughlin diagonalizes this matrix, 
i.e. applies degenerate perturbation 
theory in all coordinates 

Now look at some quantitative measures of accuracy for the 
hyperspherical method, compared with others: 



Comparison of energy level calculations in the adiabatic 
hyperspherical approximation with the Laughlin method 

(1983 Phys. Rev. B first row) which does degenerate 
perturbation theory in all degrees of freedom 

1 

2 
3 

4 

Row 1:  degenerate perturbation theory in all coordinates (as in Laughlin, 1983, 
PRL;  agrees with his numbers to all 8 digits; and  Jain et al. 2006 arXiv for N=4,5) 
Row 2:  degenerate perturbation theory in the hyperangular degrees of freedom 
only, followed by exact solution in R 
Row 3:  full Born-Oppenheimer calculation, treating R adiabatically, giving lower 
bound (if converged) to the ground state energy 
Row 4:  full adiabatic approximation including repulsive “diagonal correction 
term” (d^2/dR^2), giving an upper bound to the ground state energy 

TESTING ADIABATICITY 



At our crudest level of approximation, we 
also find exact agreement with calculations 

by Jain et al. 



From numerical “exact” 
calculations, the states 
that stand out as having 
lower energies than their 
neighboring M states are 

the Laughlin-type (1/n) and 
Jain-type states 

(primarily). 



Energy level calculations in our hyperspherical coordinate picture, compared 
with previous calculations of quantum Hall effect pioneers Laughlin  (1983 PRB) 
and from Jeong, Chang, & Jain(European Phys. J B 2007) 
 
The lower bound calculations neglect the diagonal adiabatic correction term, 
which as shown by Starace and Webster ( PRA 1979) must bound each exact 
energy level from below. 
 
The upper bound calculations conform to the usual Rayleigh-Ritz variational 
principle and are guaranteed to give energies higher than or equal to the exact 
energy levels. 
 
Finding:  Our UPPER and LOWER bounds to the energy differ  at around the 10-
5 level.  (In an AMO problem, the H- ground state, the difference is 1.9%).  This 
indicates that quasi-separability in the hyperradial coordinate is VERY good. 

1/3 1/3 1/3 1/3 1/5 Filling factor, ν     



Potential energy landscape at fixed hyperradius for 6 particles, in a 
configuration that minimizes the classical potential energy (left) 
 
After minimization, this (right) figure shows the potential energy as the 
6th particle is allowed to move throughout the plane at fixed R 

Minimum potential 
energy configuration 

Potential energy 
landscape seen by 
the central electron 



Noninteracting Quantum fermions 

Coulomb-repelling 
classical fermions that 

minimize the repulsion at 
fixed hyperradius 
(present study) 



How does fixed-node 
Monte Carlo work for 
fermions?  Take the nodal 
structure from a Slater 
determinant, and then let 
particles walk randomly 
and diffuse. 

 

This graph shows the 
nodal structure of one 
particle, in a 56-particle 
spin-polarized DFG, with 
the positions of 55 
particles chosen randomly 
and shown as small 
spheres. 



Minimum quantum Coulomb potential eigenvalues 
for lowest K=|M| (lowest Landau level) for 6 particles, 
showing their trend towards the classical minimum 
potential energy (magenta point) as K increases 



Eigenenergies for 4 particles after 
quantizing also in the hyperradius R 



K= -M=9  for N=3 
This 1/3 Laughlin 
eigenstate has a 
strong peak at an 
equilateral triangle 
configuration, 
where electrons 
can stay as far 
apart as possible, 
minimize repulsion 

K= -M=10  for N=3 
This non-FQHE 
eigenstate has a 
deep minimum at an 
equilateral triangle 
configuration 



Next:  an exploration of the role of DEGENERACY 
within each {K,M} manifold, and a conjecture 

Expectation:  If there are more degenerate states, then the system has more 
degrees of freedom to minimize the Coulomb repulsion, and one expects that 
states of unusually low energy (like the Laughlin states 1/3, 1/5, etc….) will also 
have unusually high degeneracy compared to their neighbors. 
 
Antisymmetrization of more than 5 or 6 particles is very challenging, and even 
learning how to count degeneracies Is complicated, but one useful paper we 
found is:   
S. H. Simon, E. H. Rezayi, and N. R. Cooper, Phys. Rev. B 75, 195306 (2007). 
Extending their treatment somewhat, we find a generating function can be 
used to compute the number of antisymmetric states   a|M|

(N)   for given 
N,|M|: 

Hint:  use 
Mathematica! 

e.g. the Laughlin 1/3 state for 12 particles occurs for M=-188, 
and the degeneracy of that manifold is: a|M|

(N) = 5,929,008 



On the role of exceptional degeneracy:  e.g., from group theory, 
the number of antisymmetric states for 4 particles in states with K=|M| 
turns out to be the following: 

Note:  the “hyperspherical 
filling factor”, which 
agrees with the usual 

definition for integer QHE 
and the Laughlin FQHE 

states, is given by  
 
 

N=4 electrons 

Increasing |M| =K= angular momentum  



Connection between the high relative degeneracy 
states having known filling factors seen 
experimentally and in theory (Laughlin, Jain, etc.) 

N=6 electrons 





Connections between 
hyperspherical and 
conventional filling 
factors for known 

FQHE states for 3,4, 
and 6 electrons 





Energy spectrum after solving for the hyperradial vibrational 
degree of freedom, as a function of magnetic field.  The B-field 
magnitude correlates with the maximum hyperradius used in the 
radial calculation according to the formula  

Rmax = 2.65*Sqrt(Bfield) 



“Devil’s Staircase” showing 
lowest energy state for 6 
electrons with density, 

effective mass, and dielectric 
constant parameters 

appropriate for a typical GaAs 
experiment in the fractional 

quantum Hall effect. 
2/3 

2/5 
5/13 

1 

1/3 

Interestingly, the 5/13 state that 
emerges from the 6 electron 
calculation (M=-39) is one state in 
particular that does not emerge 
naturally in the Jain composite 
fermion picture.  On the Haldane 
sphere (for experts) it corresponds to 
2Q=13, with 1 completely filled 
composite fermion Landau level 0 + 
a partially filled Landau level 1 that 
holds the extra quasi electrons, 
which interact to form pairs.  See 
Quinn&Quinn, SSCommun 2006 

Black:  hypersph. filling 
fractions 

Blue:  conventional FF 



Experimental observation of 
some states that challenge the 
first-order composite fermion 
theory, in which the CF’s are 

noninteracting; 
condmat/0303429 



Breathing mode signatures of the Laughlin 1/3 
state, a prediction (preliminary): 



What have we learned, what can we 
conjecture, where are we going from here? 

1. The adiabatic hyperspherical approximation is more accurate for the quantum 
Hall problem than for any other nonperturbative problem we have encountered 
to date.  In other words the hyperradius R is almost exactly separable from the 
other coordinates in this problem 
 

2. There appears to be a very strong correlation between the {K,M}-manifolds 
representing observable fractional filling factors and the “Exceptional 
Degeneracy” of those manifolds.  This suggests that it may be primarily a 
property of the NONINTERACTING electron gas that controls whether a given 
filling factor  n will give a FQHE resistivity plateau 
 

3. As one looks at degeneracy patterns for more and more electrons, the 
degeneracy of angular momentum M is not so different from M+2 and M-2, etc.  
This suggests that possibly it could be relatively small numbers of electron 
droplets that are responsible for states that stand out so noticeably in the 
observed FQHE states 
 

4. Note that one outcome is that for each M, viewed as a Hilbert subspace by 
itself, the eigenstates would be EXACTLY THE SAME even if there were no 
magnetic field present.  This means that the same states (e.g. Laughlin 1/3) can 
be formed even at B=0 with charged particles in a micro-trap. 



Other directions to understand: 
 
-- origin of fractional charge carriers, anyonic 
statistics, the 5/2 state, etc. 
 
-- role  and implications of entanglement and 
correlations 
 
--connection with chaos (random matrix theory, 
semiclassical closed-orbit theory a la Gutzwiller, 
etc.) 
 
--conductance fluctuations in the Corbino geometry 
 
-- predictions of novel spectroscopic signatures? 



Conclusions 
 
1. A hyperspherical mapping provides a systematic, microscopic way 

to tackle fractional quantum Hall states 
 

2. The usual Laughlin and Jain states (and possibly others) correlate 
closely with the symmetries having an exceptional degeneracy for 
noninteracting fermions 
 

3. Since these states are identifiable by a property of noninteracting 
electrons, it should be possible to probe these exceptional 
degeneracy states in other ways, e.g. without a magnetic field, or 
with neutral, ultracold polarized fermionic (or bosonic atoms) 
 

4. One can use the approximate separability of the hyper-radial 
coordinate to predict a class of excitation frequencies, almost 
trivially. 
 

5. Further study is needed to understand more detailed properties of 
the eigenstates, such as the fractional nature of charge carriers, the 
nature of quasi-particles, etc. 
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