

A UCSD analytic TFET model

Jianzhi Wu and Yuan Taur

Department of Electrical and Computer Engineering

University of California, San Diego, CA, USA, 92093

(Contact: jzwu@alumni.upenn.edu)

Last Update: Dec. 15, 2015

Model descriptions:

A continuous, analytic *I*-*V* model is developed for double-gate and nanowire tunnel FETs with 3D density of states, including depletion in the source. At the core of the model is a gate-controlled channel potential that satisfies the source and drain boundary conditions. Verified by numerical simulations, the model is able to generate I_{ds} - V_{gs} characteristics for any given staggered bandgap and channel length. I_{ds} - V_{ds} characteristics are also generated by building into the model the debiasing effect of channel charge in the linear region. It is predictive in the sense that there are no ad hoc fitting parameters.

Fig. 1. Band diagram of a heterojunction TFET with p⁺ source and n⁺ drain.

Name	Parameter Description	Unit	Default		
Material dependent parameters					
V ₁	Staggered bandgap of the source to channel heterojunction	eV	0.23		
mc	Effective mass associated with conduction band	m ₀	0.1		
mv	Effective mass associated with valence band	m ₀	0.1		
Es	Permittivity (assuming same in semiconductor and insulator)	\mathcal{E}_0	14.6		

Device related parameters					
L	Channel length	nm	20		
Na	Density of source doping	cm ⁻³	3×10 ¹⁹		
N _d	Density of drain doping	cm⁻³	3×10^{19}		
Nv	Effective density of states in the valence band	cm-3	1×10 ¹⁹		
Nc	Effective density of states in the conduction band	cm⁻³	1×10 ¹⁸		
ts	Semiconductor body thickness	nm	5		
ti	Insulator thickness	nm	2		
λ	Scale length	nm	9		
Bias dependent parameter					
Vgs	Gate bias	V	0.5		
V _{ds}	Drain bias	V	0.5		
Δ	Band bending	eV	calculated		
W _d	Depletion width	nm	calculated		
V ₀	Controlled by the gate voltage	eV	calculated		
d ₁	Source degeneracy $F_{1/2}(d_1/kT) = (\pi^{1/2}/2)(N_a/N_v)$	eV	calculated		
d ₂	Drain degeneracy $F_{1/2}(d_2/kT) = (\pi^{1/2}/2)(N_d/N_c)$	eV	calculated		
V ₂	Drain conduction band	eV	calculated		

$$V(x) = V_0 \frac{\sinh[\pi(L-x)/\lambda]}{\sinh(\pi L/\lambda)} - V_0 + V_1 - \Delta - (V_2 - V_0 + V_1 - \Delta) \frac{\sinh(\pi x/\lambda)}{\sinh(\pi L/\lambda)}$$
(1)

$$U(x) = -\frac{q^2 N_a}{2\varepsilon_s} \left(x + \sqrt{\frac{2\varepsilon_s \Delta}{q^2 N_a}} \right)^2$$
(2)

$$Q_{inv} = \frac{4kT\varepsilon_s}{qt_s}\beta\tan\beta \tag{3}$$

$$\frac{q(V_{gs} - V_{ds} - d_1)}{2kT} - \ln\left[\frac{2}{t_s}\sqrt{\frac{2\varepsilon_s kT}{q^2 N_c}}\right] = \ln\beta - \ln\left[\cos\beta\right] + \frac{2\varepsilon_s t_i}{\varepsilon_i t_s}\beta \tan\beta$$
(4)

For given V_{gs} and V_{ds} , calculate Q_{inv} from Eqs. (3) and (4), then solve V_0 and Δ from Eqs. (5) and (6).

$$V_0 = (V_{gs} - Q_{inv}/C_{ox}) + (V_1 - \Delta), \quad V_2 = d_1 + d_2 + qV_{ds}$$
(5)

$$\frac{1}{q} \left| \frac{dV}{dx} \right|_{x=0} = \left(\frac{\pi}{q\lambda} \right) \frac{V_0 \cosh(\pi L/\lambda) + (V_2 - V_0 + V_1 - \Delta)}{\sinh(\pi L/\lambda)} = \sqrt{\frac{2N_a \Delta}{\varepsilon_s}}$$
(6)

$$T(E, E_{\perp\nu}) = \exp\left\{-\frac{2\sqrt{2}}{\hbar} \left[m_{\nu} \int_{l_{1}}^{0} \sqrt{-U(x) - (E - E_{\perp\nu})} dx + m_{c} \int_{0}^{l_{2}} \sqrt{V(x) + E + E_{\perp c}} dx\right]\right\}$$
(7)

$$j = \frac{qm_{\nu}}{2\pi^{2}\hbar^{3}} \int_{0}^{V_{2}} (f_{s} - f_{d}) \left[\int_{0}^{E_{\perp m}} T(E, E_{\perp \nu}) dE_{\perp \nu} \right] dE$$
(8)

Where $E_{\perp m}$ is the is the smaller of E and $(m_c/m_v)(V_2 - E)$

Model generated examples:

Fig. 2. Model generated $I_{\rm ds}\text{-}V_{\rm gs}$ characteristics with default parameters (time: 33 seconds)

Fig. 3. Model generated I_{ds}-V_{ds} characteristics with default parameters (time: 170 seconds)

References:

[1] Yuan Taur, Jianzhi Wu and Jie Min, "An analytic model for heterojunction tunnel FETs with exponential barrier" *IEEE Transactions on Electron Devices*, vol. 62, no. 5, pp. 1399-1404, May 2015.

[2] Jianzhi Wu, Jie Min, and Yuan Taur, "Short channel effects in tunnel FETs", *IEEE Transactions on Electron Devices*, vol. 62, no. 9, pp. 3019-3024, Sept. 2015.

[3] Jianzhi Wu, Jie Min, Jingwei Ji and Yuan Taur, "An analytic model for heterojunction and homojunction tunnel FETs with 3D density of states", in *Proc. of 73rd Device Research Conference (DRC)* (pp. 249-250), Ohio, USA, June, 2015.

[4] Jie Min, Jianzhi Wu and Yuan Taur, "Analysis of source doping effect in tunnel FETs with staggered bandgap", *IEEE Electron Device Letters*, vol. 36, no. 10, pp. 1094-1096, Oct. 2015.