

Too hot to handle? The emerging Challenge of Reliability/Variability in Self-heated FinFET, ETSOI, and GAA-FET

Muhammad A. Alam (alam@purdue.edu) S. Shin, A. Wahab, J. Gu. J. Zhang, P. Ye

> http://nanohub.org/resources/16560 cobweb.ecn.purdue.edu/~alam

Uniformity of Components in Large Systems

Building large systems presumes uniformity of components

Process, Reliability, and Design

We do not have too much margin ...

Outline

- Background: Variability/Reliability in Planar Transistors
- Self-heating in SG-FETs: An Emerging Issue
- Channel Width/Length dependence
- Reliability correlated to Variability: New Channels for MOSFET Degradation
- Conclusions

Emergence of Surround Gate Transistors Technologies $I_{off} \propto I_o e^{\frac{q(V_G + \eta V_D)}{kT}}$

 $I_{on} \propto C_{ox} \mu_n (V_G - V_T)$

Electron Mobility (cm²/V-s)

Extraordinary mobility

Excellent gate control

A Very High Performance MOSFET

Jiangjiang Gu, IEDM 2012

Performance is classical ...

□ Lch=20nm, EOT=1.2 nm, □ I_{ON} = 0.57mA/µm, g_m = 1.65mS/µm @ V_{ds} = V_{gs} - V_T = 0.5V □SS = 75mV/dec, *DIBL* = 40mV/V, $V_{T,lin}$ = 0.14V

... with good noise performance

Power vs. self-heating

$$\Delta T \equiv T - T_a = P \times R_{th}$$

C

d

Process complexity & Thermal Bottleneck

Self-heating and body thickness

Simulation

Experiment

$\Delta T \equiv T - T_a = P \times R_{th}$

3D Mapping of Self-heating

Wei Jin, TED '01, Shin, IEDM '13, Wahab, TED, 2015

Improved SS comes with higher R_{th}

Outline

- Background: Variability/Reliability in Planar Transistors
- Self-heating in SG-FETs: An Emerging Issue
- Channel Width/Length dependence
- Reliability correlated to Variability: New Channels for MOSFET Degradation
- Conclusions

What is wrong with this picture ?

(I) On current does not scale

(2) Variable on/off ratio & SS slope..

(3) Noise reduces with Lch!

Evidences of Significant Self-heating

(4) Self heating (80-120), Surface T = 60-70 lower. Why?

Self heating reduces series resistance!

- Self-heating improves performance by reducing $R_{C_{\rm r}}$ and hence improves lon.
- Temperature dependence of channel resistance has the opposite sign.

Self-heating for On & Off currents

Self-heating explains on/off puzzle

Variable on off ratio ..

SS depends on Variability/Self-heating

- $I_{s}-V_{gs}$ of 4NW = summation of 4*($I_{s}-V_{gs}$ of 1NW)
- 4NW with variability of $V_{th} \rightarrow Widening I_s V_{gs}$
- SS increases with Variability & Self heating

Outline

- Background: Variability/Reliability in Planar Transistors
- Self-heating in SG-FETs: An Emerging Issue
- Channel Width/Length dependence
- Reliability correlated to Variability: New Channels for MOSFET Degradation
- Conclusions

A Short History of Reliability

How do III-V reliability compare to the Si counterpart?

HCI damages the drain-edge

PBTI vs. HCI: ΔV_T degradation

HCI dominated by trapping, PBTI by donor trap generation

Variability-Reliability: Features of the Subthreshold Slope

(3) TDDB: NW dictates self-heating

Correlated NW-dependent TDDB

TDDB depends on # of NW !

Conclusions

- Significant self-heating expected in surround gate technologies.
- This creates a new source of run-time variability, but also interesting correlation between process variability and reliability.
- Width dependence, TDDB and PBTI all require significant redefinition of design process.
- This is especially challenging for tail distribution.