Birck Nanotechnology Center

Dendrimer-Templated Catalyst for Controlled Growth of Single-Wall Carbon Nanotubes by PECVD

Placidus Amama

Birck Nanotechnology Center

Research Projects

Catalyst Fabrication and Controlled CNT Growth by PECVD

T.D. Sands, T.S. Fisher

Electrical Characterization of CNTs

C. Lan, T.S. Fisher, R. Reifenberger

Low-Temperature Growth of CNTs

B. Cola, T.D. Sands, T.S. Fisher

CNT Based Electrochemical Biosensor

S. Kim, T.S. Fisher

CNT Growth Mechanism

T.D. Sands, T.S. Fisher

CNT Thermal Interfaces

B. Cola, X. Xu, T.S. Fisher

Outline

- Background
- Dendrimer template

Park

- Annealing ambient
- Metal-substrate interaction
- $-H_2$ -prereduction
- Positive and negative dc bias voltage
- Control of SWNT chirality
- Low-temperature growth
- Growth mechanism
- ➤ Summary
- Acknowledgements

Gallery of Carbon

Diamond

Carbon chain

Discovered 1991 by **Ijima** while studying C_{60} production ["Helical microtubules of graphitic carbon", S. Iijima, Nature **354**, 56 (1991)]

http://www.seed.slb.com/en/scictr/watch/fullerenes/index.htm

SWNT Types

- STRIP OF A GRAPHENE SHEET ROLLED INTO A TUBE
- The graphene sheet can be 'rolled' in different ways to form different tube types

CA10

Park

Each type has different electrical properties

http://www.ipt.arc.nasa.gov/Graphics/cnt_based_nanotech.pdf

Some Interesting Properties and Characteristics of CNTs

- Mechanical
 - Young's modulus ~1 TPa (5X steel) (Treacy et al. 1996)
- Electrical
 - Metallic or semiconductor behavior, depending on wall structure of SWNTs
 - Ballistic conductor, R=6500 Ω , ~independent of length (Frank et al., 1998)
 - Field emission threshold field ~1 V/micron (Bonard et al., 2001)

Thermal

- Room-temperature thermal conductivity ≈3000 W/mK (8X copper)
- Similar to diamond and graphite
- Others
 - High chemical (such as lithium) storage capacity
 - High aspect ratio (length = ~1000X diameter)
 - Excellent catalyst support

Barriers to Device Design and Commercialization of CNTs

- Homogeneous electronic properties through control of nanotube diameter and chirality
- > Fundamental understanding of the growth mechanism
- High growth temperatures
- Presence of defects and impurities

Growing Carbon Nanotubes

Processing methods that can produce scalable quantities:

- Electric arc discharge S. Iijima, NEC R&D Group, Japan
- Laser ablation *R. Smalley, Rice University*
- Chemical Vapor Deposition (CVD)- H. Dai, Stanford University
 - Plasma-enhanced CVD
 - •Thermal CVD

Park

Outline

- Background
- Dendrimer template
 - Annealing ambient
 - Metal-substrate interaction
 - H_2 -prereduction
 - Positive and negative dc bias voltage
- Control of SWNT chirality
- Low-temperature growth
- Growth mechanism
- > Summary
- Acknowledgements

Dendrimer Template: Objectives

- Synthesize monodispersed Fe nanoparticles (< 3 nm) for SWNT growth</p>
 - Using PAMAM dendrimer as a "nanotemplate"
- Control CNT properties: wall selectivity, purity, alignment, chirality, and diameter
 - Annealing ambient (H_2 , N_2 , Ar and vacuum)
 - H_2 prereduction
 - Metal-substrate interaction
 - Positive and negative dc bias voltage
- Reduce the growth temperature of CNTs
- Investigate the active specie involved in CNT nucleation

What is a Dendrimer?

Discovered in the early 1980's by Dr. Don Tomalia

- Discrete, well-defined polymers
- Synthetic 3D macromolecule
- Synthesized in a series of repetitive reactions from simple monomer units

Novel attributes of dendrimers

Uniform composition and structure

http://www.almaden.ibm.com/st/ chemistry/ps/dendrimers/

- Nanoparticles are stabilized by encapsulation
- > The core or peripheral functional groups can be tailored
- > Encapsulation of metal nanoparticles occurs mainly by steric effects

R.W.J. Scott, O.M. Wilson, R.M. Crooks, J. Phys. Chem. B 2005, 109, 692

Mechanism of Formation

G-4 Poly(amidoamine) (PAMAM) dendrimer-stabilized transition metal nanocomposite

R.W.J. Scott, O.M. Wilson, R.M. Crooks, J. Phys. Chem. B 2005, 109, 692

Characterization Tools

Raman spectroscopy

Excitation wavelengths: 514, 574, 633, 785 nm

- G-band (1500-1600cm⁻¹)
- D band (1200-1400cm⁻¹) Purity index (G/D ratio)

 $W_{\rm RBM}(\rm cm^{-1}) = 12.5 + 223.5/d(\rm nm)$

- Radial breathing mode (RBM) (100-400cm⁻¹)
- FESEM
- AFM
- TEM
- XPS

AFM Images, Topographic Height Profiles, and PSDs of Fe Nanoparticles

Park

> Advantages

- High-quality CNT synthesis
- Vertical alignment
- Low-temperature growth
- Controllability of PECVD
 - Typical substrate temperature 600-1000°C
 - Max. 1.5 kW microwave source (2.5 GHz)
 - Max. 600V dc substrate bias
 - 3 to 200 torr chamber pressure
 - Feed gases: H₂, CH₄, and N₂

CNT Quality, Yield, and Selectivity

scery Park

Park

Ex-situ XPS Analysis: Raw Data

 Al_2O_3 supports

The standard binding energy (BE) for CNTs is 284.3 eV

Observed shift in BE = 1.3 eV

FWHM of C 1s peak $N_2 = 1.03 \text{ eV}$ Ar = 1.36 eV $H_2 = 1.14 \text{ eV}$

P.B. Amama, D. Zemlyanov, D.N. Zakharov, R.S. Katiyar, T.D. Sands, T.S. Fisher, manuscript in preparation

Effect of Annealing Ambient on the PSD of Fe₂O₃ Nanoparticles

Ar-Annealed Fe_2O_3 22% < 3 nm

 N_2 -Annealed Fe_2O_3

45% < 3 nm

P.B. Amama, M.R. Maschmann, T.S. Fisher, T.D. Sands, J. Phys. Chem. B 2006, 110, 10636

AFM Images, Topographic Height Profiles, and PSDs of Fe Nanoparticles

scavery Park

900 °C 5 min 20

500 °C 5 min

P.B. Amama, M.R. Maschmann, T.S. Fisher, T.D. Sands, J. Phys. Chem. B 2006, 110, 10636

Growth Under dc Bias Voltage

cevery Park

P.B. Amama, M.R. Maschmann, T.S. Fisher, T.D. Sands, J. Phys. Chem. B 2006, 110, 10636

Diameter Distribution of SWNTs

Park

Multi-excitation wavelength Raman spectroscopy

 $W_{\rm RBM}(\rm cm^{-1}) = 12.5 + 223.5/d(\rm nm)$

P.B. Amama, D. Zemlyanov, D.N. Zakharov, R.S. Katiyar, T.D. Sands, T.S. Fisher, manuscript in preparation

Birck Nanotechnology Center

Comparison of RBMs with the Kataura Plot

RDUE

cevery Park

Birck Nanotechnology Center

Outline

- Background
- Dendrimer template
 - Annealing ambient
 - $-H_2$ prereduction
 - Metal-substrate interaction
 - H_2 -prereduction
 - Positive and negative dc bias voltage
- Control of SWNT chirality
- Low-temperature growth
- Growth mechanism
- > Summary
- Acknowledgements

DUE Discovery Park

Application of Negative dc Voltage Bias

Using Co/MgO catalyst

Larger diameter and semiconducting SWNTs are favored under negative dc voltage bias

 $> I_G/I_D$ decreases with positive dc voltage bias

M.R. Maschmann, P.B. Amama, A. Goyal, Z. Iqbal, T.S. Fisher, Carbon 2006, 44, 2758.

Comparison of RBMs with the Kataura Plot

RDUE

cevery Park

M.R. Maschmann, P.B. Amama, A. Goyal, Z. Iqbal, T.S. Fisher, Carbon 2006, 44, 2758.

Positive dc Substrate Bias

Using Co/MgO catalyst

- Dual-wavelength Raman spectra show emergence of RBM above 250 cm⁻¹
- No chirality preference observed
- I_G/I_D increases with positive bias
 - Increase in SWNT density
 - Mitigation of H⁺ damage

Outline

- Background
- Dendrimer template
 - Annealing ambient
 - $-H_2$ prereduction
 - Metal-substrate interaction
 - Positive and negative dc bias voltage
- Control of SWNT chirality
- Low-temperature growth
- Growth mechanism
- Summary
- Acknowledgements

Shielded Growth Approach

Experimental setup for low-temperature growth from shielded and exposed SiO_2/Si -supported Fe_2O_3 nanoparticles in the PECVD reactor

Dendrimer-Assisted Low-Temperature Growth

DUE

scevery Park

P.B. Amama, O. Ogebule, M.R. Maschmann, T.D. Sands, T.S. Fisher, Chem. Commun. 2006, 27, 2899.

Park

P.B. Amama, O. Ogebule, M.R. Maschmann, T.D. Sands, T.S. Fisher, Chem. Commun. 2006, 27, 2899.

Outline

- Background
- Dendrimer template
 - Annealing ambient
 - $-H_2$ prereduction
 - Metal-substrate interaction
 - Positive and negative dc bias voltage
- Control of SWNT chirality
- Low-temperature growth
- Growth mechanism
- Summary
- Acknowledgements

Process Flow for SWNT Synthesis from Discrete Nanoparticles by CVD

Y. Li, W. Kim, Y. Zhang, M. Rolandi, D. Wang, H. Dai, J. Phys. Chem. B 2001, 105, 11424-11431

XPS Spectroscopy: After Carbon Deposition

Park

CANON

Amplent	Binding Energy (ev)	
	Fe 2p _{1/2}	Fe 2p _{3/2}
N ₂	720.2	707.1
Ar	719.9	706.7
H ₂	719.9	707.0

Fe 2p peaks with BEs corresponding to 720 and 707 eV are ascribed to metallic Fe
Metallia Fe appears to be the active

Metallic Fe appears to be the active specie during CNT growth

P.B. Amama, D. Zemlyanov, D.N. Zakharov, R.S. Katiyar, T.D. Sands, T.S. Fisher, manuscript in preparation

Birck Nanotechnology Center

Summary

- Growth conditions in the PECVD chamber that favor stabilization of Fe₂O₃ nanoparticles and the chemical specie that nucleates CNT growth have been determined.
- The findings have enabled the growth of SWNTs of narrow diameter distribution, and the increase in SWNT selectivity and quality.
- The application of dc bias voltage during SWNT growth improves vertical alignment, quality, and selectively removes metallic SWNTs leaving larger-diameter semiconducting SWNTs.
- Low-temperature growth (200-400°C) of MWNTs has been demonstrated using a shielded growth approach, which also shows promise for SWNT growth.

Acknowledgements

- Prof. Tim Sands
- Prof. Tim Fisher
- NASA-Purdue Institute for Nanoelectronics and Computing (INaC)
- Birck Nanotechnology Center, Purdue University
- Dr. Dmitry Zemlyanov, Purdue University
- Dr. Matt Maschmann, Intel
- Prof. Katiyar, University of Puerto Rico
- **Prof. Lynne Taylor**, Purdue University
- Members of Fisher Group
- Members of Sands Group

Questions and Answers

Ex-situ XPS Analysis: Raw Data

 Al_2O_3 supports

The standard binding energy (BE) for CNTs is 284.3 eV

Observed shift in BE = 1.3 eV

FWHM of C 1s peak $N_2 = 1.03 \text{ eV}$ Ar = 1.36 eV $H_2 = 1.14 \text{ eV}$

P.B. Amama, D. Zemlyanov, D.N. Zakharov, R.S. Katiyar, T.D. Sands, T.S. Fisher, manuscript in preparation

Questions and Answers

Mechanism of Formation

G-4 Poly(amidoamine) (PAMAM) dendrimer-stabilized transition metal nanocomposite

R.W.J. Scott, O.M. Wilson, R.M. Crooks, J. Phys. Chem. B 2005, 109, 692