Support Options

Submit a Support Ticket

Home Online Presentations Atomistic Alloy Disorder in Nanostructures About

Atomistic Alloy Disorder in Nanostructures

By Gerhard Klimeck

Purdue University

Published on


Electronic structure and quantum transport simulations are typically performed in perfectly ordered semiconductor structures. Bands and modes are defined resulting in quantized conduction and discrete states. But what if the material is fundamentally disordered? What if the disorder is at the same length scale as the device itself? This presentation will provide an introduction to the intriguing physics of disordered systems in bulk, quantum dots, nanowires, and quantum wells. The general tool electronic structure tool NEMO 3-D is used for the simulation of atomistically disordered systems that are of realistically large length-scales containing millions of atoms.


Gerhard Klimeck is the Technical Director of the Network for Computational Nanotechnology at Purdue University and a Professor of Electrical and Computer Engineering since Dec. 2003. He was the Technical Group Supervisor at the NASA Jet Propulsion Laboratory. His research interest is in the modeling of nanoelectronic devices, parallel cluster computing, and genetic algorithms.


The presentation reviews material from primarily three scientific publications:

  • "Development of a Nanoelectronic 3-D (NEMO 3-D) Simulator for Multimillion Atom Simulations and Its Application to Alloyed Quantum Dots" (INVITED), Gerhard Klimeck, Fabiano Oyafuso, Timothy B. Boykin, R. Chris Bowen, and Paul von Allmen Computer Modeling in Engineering and Science (CMES) Volume 3, No. 5 pp 601-642 (2002). preprint on nanoHUB.
  • "Atomistic Electronic Structure Calculations of Unstrained Alloyed Systems Consisting of a Million Atoms", Fabiano Oyafuso, Gerhard Klimeck, R. Chris Bowen, and Timothy B. Boykin, Journal of Computational Electronics, Vol 1. Issue 3, pp. 317-321 (2002). preprint on nanoHUB.
  • Neerav Kharche, Marta Prada, Timothy B. Boykin, and Gerhard Klimeck, "Valley-splitting in strained Silicon quantum wells modeled with 2 degree miscuts, step disorder, and alloy disorder", Applied Phys. Lett. Vol. 90, 092109 (2007). preprint on nanoHUB.

Further details and credits can be found at the NEMO 3-D home page .

Sponsored by

Cite this work

Researchers should cite this work as follows:

  • Gerhard Klimeck (2007), "Atomistic Alloy Disorder in Nanostructures,"

    BibTex | EndNote



EE Building, Room 317

Tags, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.