Plasmonics and Metasurfaces for Extreme Manipulation of Light

Yongmin Liu

Department of Mechanical and Industrial Engineering Department of Electrical and Computer Engineering Northeastern University, Boston, Massachusetts, USA

Purdue University, August 3, 2015

Outline

- Introduction to Plasmonics and Metasurfaces
- Reconfigurable Plasmonic Lenses in Fluids
- Circular Dichroism Metamirror with Perfect Extinction Ratio
- Hyperbolic Metasurfaces to Control Surface Plasmons
- Conclusions

Surface Plasmon Polaritons

Plasmonics focuses on the novel properties and applications of Surface Plasmon **Polaritons** (SPP), which are collective electron oscillations coupled with light.

SPP dispersion relation:

lortheastern

Localized Surface Plasmon Polaritons

Unique properties:

Northeastern

- Tight field confinement (beyond the diffraction limit)
- Strong field enhancement
- Tunability arising from geometry and dielectric environment

K. Yao and Y. M. Liu, Nanotech. Reviews. 3, 177 (2014)

Various Applications of Plasmonics

Novel Plasmonic Elements

Plasmonic Nano Laser: Nature 460, 1110 (2009); Nature 461, 629 (2009)

Plasmonic Photodetector: Nature Photonics 2, 226 (2008); Science 332, 702 (2011)

Plasmonic Waveguide: Nature 440, 508 (2006); Nature Photonics 2, 496 (2008)

Plasmonic Antenna: Science 308, 1607 (2005); Science 329, 930 (2010)

Northeastern

Metamaterials: beyond Natural Materials

- Metamaterials are artificial composite materials with engineered "atoms".
- The size and spacing of the unit cell are much smaller than the wavelength.
- Effective material properties can be defined, which are primarily dependent on the structure, rather than the chemical constituent.

Northeastern

Liu and Zhang, Chemical Society Reviews 40, 2494 (2011) 7

Metasurfaces: A New Class of 2D Metamaterials

Refraction: $\sin(\theta_{t})n_{t} - \sin(\theta_{i})n_{i} = \frac{\lambda_{o}}{2\pi}\frac{d\Phi}{dx}$ Reflection: $\sin(\theta_{r}) - \sin(\theta_{i}) = \frac{\lambda_{o}}{2\pi n_{i}}\frac{d\Phi}{dx}$

N. F. Yu et al., Science 334, 333 (2011); X. J. Ni et al., Science 335, 427 (2011)

Novel Applications based on Metasurfaces

Optical Lenses

Science 334, 333 (2011); Nature Commun. 3, 1198 (2012); Science, 345, 298, (2014)

Nonlinear Optics

Nature Materials 14, 607 (2015)

Northeastern

Hologram

Nature Commun. 4, 2807 (2013); Nature Commun. 4, 2808 (2013)

Advantages: •planar platform, hence ideal for integration •low loss

Review: Science 339, 1232009 (2013); Nature Materials 13, 139 (2014)

Outline

- Introduction to Plasmonics and Metasurfaces
- Reconfigurable Plasmonic Lenses in Fluids
- Circular Dichroism Metamirror with Perfect Extinction Ratio
- Hyperbolic Metasurfaces to Control Surface Plasmons
- Conclusions

Directional Surface Plasmon Source

SEM Image

Image Plane

Fourier Plane

Y. M. Liu et al., Nano Lett., 12, 4853 (2012)

Plasmonic Luneburg and Eaton Lenses

Experiment Theory

Y. M. Liu et al., Nano Letters 10, 1991 (2010);T. Zentgraf et al., Nature Nanotech. 6, 151 (2011)

Reconfigurable Plasmofuidic Lenses

- Combining plasmonics with microfluidics enables reconfigurable plasmofluidic devices for multiple functionalities
- Laser induced surface bubbles function as reconfigurable lenses to dynamically control the propagation of SPPs

Northeastern

C. L. Zhao et al., Nature Comm. 2305 (2013)

Functions of the Plasmofuidic Lens

Divergence of SPPs

C. L. Zhao et al., Nature Comm. 2305 (2013)

Focusing and Collimation of SPPs

C. L. Zhao et al., Nature Comm. 2305 (2013)

Collimated Surface Plasmon Beam

The collimated surface plasmon beam shows small divergence even for 40 μm propagation distance. The FWHM is well maintained about 2-3 $\mu m.$

Non-spherical Surface Bubbles

Non-spherical Surface Bubbles (cont'd)

Acoustic Wave Off

Acoustic Wave On

A piezo transducer (bonded to the sample surface) was actuated to generate acoustic waves. The bubble oscillates near the 5th harmonic mode.

Northeastern

Outline

- Introduction to Plasmonics and Metasurfaces
- Reconfigurable Plasmonic Lenses in Fluids
- Circular Dichroism Metamirror with Perfect Extinction Ratio
- Hyperbolic Metasurfaces to Control Surface Plasmons
- Conclusions

Reflection from Mirrors

Ordinary Metallic Mirror

Circular Dichroism Metamirror

Circularly polarized light reverses its helicity upon reflection from a normal metallic mirror. For large incident angles, the reflected light becomes elliptically polarized.

Can we design circular dichroism metamirror to selectively reflect desired circularly polarized light and maintain its helicity?

Northeastern

Circular Dichroism (CD) Mirrors from Nature

- The beetle C. gloriosa derives distinct iridescence under LCP and RCP illumination.
- The optical effect arises from the complex structure of the exoskeleton.
- Moreover, the reflection contrast is not high (about 40% for LCP, 5% for RCP).

Northeastern

V. Sharma et al., Science 325, 449 (2009)

Requirement of Structural Symmetry

Through rigorous analyses based on Jones calculus, we find the general structural requirement for CD metamirrors:

Simultaneous breaking of the *n*-fold rotational (n > 2) and mirror symmetries

Simulated Optical Response of the CD Metamirror

Reflection is 94.7% for LCP light, while only 0.7% for RCP light at 8.1 µm wavelength

Northeastern

Omnidirectional Performance

Insensitivity on the Geometry Offset

Single-layer CD Mirror in the Near-IR Region

Single-layer CD Mirror in the Near-IR Region

Potential Applications of CD Metamirrors

- Chiral molecule sensing
- Polarimetric imaging and detection
- Novel cavities for chiral lasers
- Quantum optical information processing

Outline

- Introduction to Plasmonics and Metasurfaces
- Reconfigurable Plasmonic Lenses in Fluids
- Circular Dichroism Metamirror with Perfect Extinction Ratio
- Hyperbolic Metasurfaces to Control Surface Plasmons
- Conclusions

Hyperbolic Metamaterials

Anisotropic media with diagonal permittivity tensor

$$\vec{\varepsilon} = \varepsilon_0 \begin{pmatrix} \varepsilon_x & 0 & 0 \\ 0 & \varepsilon_y & 0 \\ 0 & 0 & \varepsilon_z \end{pmatrix}$$

Dispersion relation:

$$\frac{k_{x}^{2} + k_{y}^{2}}{\varepsilon_{z}} + \frac{k_{z}^{2}}{\varepsilon_{x}} = \frac{\omega^{2}}{c^{2}}$$

Northeastern

Review: Science 339, 1232009 (2013); Nature Photonics 7, 948 (2013) 31

Novel Properties of Hyperbolic Metamaterials

broadband negative refraction

Yao et al., Science 321, 930 (2008)

enhanced spontaneous emission

Opt. Lett. 35, 1863–1865 (2010); APL 100, 181105 (2012)

Hyperbolic Metasurfaces

Y. M. Liu and X. Zhang, APL 103, 141101 (2013)

Surface plasmons are localized at the top of the ridges, which are insensitive to the geometry deviation.

Constant Frequency Contour

periodicity: 120 nm, width: 60 nm, and height: 80 nm

- Coupled mode theory: $k_z = b + 2C \cos(k_x p)$, where C is the coupling coefficient
- The shape of the constant frequency contour depends on the sign of *C* Northeastern
 Y. M. Liu and X. Zhang, APL 103, 141101 (2013) 34

Distinct Characteristics of SPP Propagation

Y. M. Liu and X. Zhang, APL 103, 141101 (2013) 35

Negative Refraction of SPPs

7.5% disorder in periodicity

Y. M. Liu and X. Zhang, APL 103, 141101 (2013) 36

Experimental Demonstration of Hyperbolic Metasurfaces

Northeastern

A. A. High et al., Nature 522, 192 (2015)

Plasmonic Spin-Hall Effect

A. A. High et al., Nature 522, 192 (2015)

Biaxial Hyperbolic Metamaterials

permittivity tensor:
$$\vec{\varepsilon} = \varepsilon_0 \begin{pmatrix} \varepsilon_x & 0 & 0 \\ 0 & \varepsilon_y & 0 \\ 0 & 0 & \varepsilon_z \end{pmatrix}$$

consider the case: $\varepsilon_x > \varepsilon_y > 0$ and $\varepsilon_z < 0$

Northeastern *Gao et al., Light: Science and Applications, in press*

Helicity-Dependent Surface Waves

LCP excitation

RCP excitation

The surface wave has TE and TM components, which have $\pi/2$ phase difference. We can selectively control the surface wave propagation by the handedness.

Northeastern

Gao et al., Light: Science and Applications, in press

Conclusions

- A reconfigurable plasmofluidic lens, which could implement multiple functionalities and potentially reduce the size of optofluidic devices below the diffraction limit.
- A new concept of circular dichroism metamirrors is proposed to selectively reflect/absorb circularly polarized light and maintain its helicity.
- We demonstrate that hyperbolic metasurfaces exhibit anomalous dispersions, allowing collimation and negative refraction of surface plasmons. Furthermore, helicity-dependent surface waves can be exited.

Northeastern