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Maxwell’s Equations (Not in Comatose!) 
 Valid over a vast length scale and broad frequency range. 

 From subatomic dimension to galactic dimension; static to ultra-violet. 
 Relativistic invariance (special relativity, Einstein, 1905). 

 Equations remain the same in all inertial frame. 
 Valid in the quantum regime as well  (Dirac, 1927). 

 Dyadic Green’s function is still needed in quantum regime. 
 Coherent state in quantum optics by Glauber, 1968. (2005 Nobel Laureate) 

 In harmony with differential geometry (Cartan, 1945) 
 Differential forms and Yang-Mills theory (1954).  Differential forms 

illuminate EM theory, and EM theory illuminates differential forms (quote 
from Misner, Thorne, and Wheeler). 

 One of the most accurate equations (Feynman, 1985, Aoyama et al,  Styer, 
2012). 
 Validated to a few parts in a trillion. 

 Tremendous impact in science and technology. 
 Electrical engineering, optics, wireless and optical communications, 

computers, remote sensing, bioelectromagnetics, etc. 
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Intro: The Tale of Three Physics; 
Circuit Physics; Wave Physics; Ray Physics; 
(not to mention quantum physics) 
 

Circuit Physics 

Wave Physics 

Ray Physics 

Inspired nano-antennas: 
Dragely et al. 

Yagi-Uda 1926 

http://en.wikipedia.org/wiki/File:Prism_rainbow_schema.png


A Brief History of Electromagnetics and 
Optics 

 Lode stone 400BC, Compass 200BC 
 Static electricity, Greek, 400 BC 
 Ampere’s Law 1823; 
 Faraday Law 1838; 
 KCL/KVL 1845 
 Telegraphy (Morse) 1837; 
 Electrical machinery (Sturgeon) 1832; 

 Pinhole camera, 400BC, 
Mozi,  

 Ibn Sahl, refraction 984; 
 Snell, 1621;  
 Huygens/Newton 1660; 
 Fresnel 1814; 
 Kirchhoff 1883; 

 

 Maxwell’s equations 1864/1865; 
 Heaviside, Hertz, Rayleigh, Sommerfeld, Debye, Mie, Kirchhoff, 

Love, Lorentz (plus many unsung heroes); 
 Quantum electrodynamics 1927 (Dirac, Feynman, Schwinger, 

Tomonaga); 
 Electromagnetic technology; 

 
 
  Quantum optics/Nano-optics 1980s; 

 Quantum information/Bell’s theorem 1980s; 
 Quantum electromagnetics/optics (coming). 

 Nano-fabrication technology; 
 Single-photon measurement; 



Electromagnetics (EM) /Optics 
Technologies 

Electromagnetics Optics 
 Lens; 
 Lasers (1958); 
 Semiconductor lasers (hω); 
 LEDs; 
 Opto-electronics; 
 Interferometric imaging; 

 Optical Coherence 
Tomography; 

 Optical phase imaging; 
 Nano-optics; 

 Nano-antennas. 
 
 

 Antennas; 
 Communications; 

 Radars; 
 Maser (1952); 
 Remote sensing; 
 Synthetic Aperture Radar; 
 Interferometric radar; 
 Computational 

electromagnetics; 



Age of Approximations 

 High Frequency Asymptotics (Ray Physics); 

R. G. Kouyoumjian and P. H. Pathak Proc. IEEE, vol. 62, pp. 1448–1461, 1974. 
S.W. Lee and G.A. Deschamps, Antennas and Propagation, IEEE Transactions on, 24.1: 25-34, 1976. 

J. B. Keller, JOSA, vol. 52, pp.116–130, 1962. 

P. Y. Ufimtsev, Fundamentals of the physical theory of diffraction, New 
York: John Wiley and Sons, Inc., 2007. 

Sommerfeld Half Plane 

Cylinder Scattering: Watson Transformation 



Age of Computations 
 Galerkin, 1915; subspace projection. 
 Finite element methods; Silvester & Ferrari, Mei, 

Cendes & Lee, Volakis, Jin etc (1960s-1980s). 
 Differential forms and differential geometry (Cartan, 

1945; Deschamps; Desbrun); 
 One forms, E, H, are curl conforming; 
 Two forms, B, D, are divergence conforming; 

 Yee grid (1960s) fits with differential forms easily; 
 Staggered grids and dual grids; 
 Coordinate stretching Perfectly Matched Layer; 
 Works even for static field; 

 Allen Taflove; FDTD (1990s); 
 Berenger; PML, Sacks, Lee & Lee etc (1990s) 
 Coordinate Stretching PML Chew Weedon (1994); 

 

W.C. Chew, W.H. Weedon and A. Sezginer, Proc.      

11th ACES, pp. 482-489, March 20-25,1995. 



Integral Equation Method (Moment of Moments History) 

 Kravchuk, 1932; 
 Kantorovich, Krylov 

 Harrington 1967; 
 Richmond 1965; 
 Numerical Electromagnetics Code, 

 Burke, Poggio, Logan, Rockway, 1977. 
Miller 

 Rao-Wilton-Glisson patch basis, 
1982; 
 



Age of Computation--Early Days 

 In the early days, only several thousand unknowns are 
possible on a workstation using MoM or integral 
equation solvers; 

 Tens of thousands of unknowns are possible using 
FDTD on a workstation; 

 So FDTD was far ahead of MoM in popularity in the 
late 1980s; 

 In the 80s, mode matching methods were developed; 
 However, in the early 1990s, fast algorithms for 

integral equations started to emerge; 
 They use a divide and defeat (DaD) scheme. 



Fast Algorithms Needed 

 Curse of dimensionality; 
 Unknown count grows rapidly with frequency in 3D. 
 RCWA (Rigorous Coupled Mode Analysis), Moharam and 

Gaylord, 1981. 
 Semi-analytic numerical mode-matching method, 1984. Chew et 

al. 
 Replace FEM, FDM, and VIE with surface integral equations. 
 

 
 
 
 

 



Famous Indian Proverb 

 What’s in the history of CEM, one man can’t tell all! 



Fast Algorithms--Contd 

 Cruelty of computational complexity; 
 In the beginning, developed fast algorithm to 

address the inverse scattering problem; 
 Super-resolution inverse problem—Distorted 

Born Iterative Method (DBIM) 
 

 
 

 

M. Moghaddam and W. C. Chew, IEEE Trans. Geosci. Remote Sensing, vol. 
GE-30, no. 1, pp. 147-156, Jan. 1992. 

Evanescent waves  
needed for super-
resolution  



Super-resolution Inversion 

 With W.H. Weedon, F.C. Chen, P.E. Mayes 



Recursive Algorithms 

 Recursive aggregate T matrix algorithm (RATMA); 
 Computational complexity is O(N2) in 2D and O(N2.33) 

in 3D for multiple right-hand side; 
 Memory usage is O(N) in 2D and O(N1.33) in 3D. 

 Use the n-unknown problem to solve the (n+1)-
unknown problem; 

L. Gürel and W. C. Chew, “A recursive T-matrix algorithm for strips and 
patches,” Radio Science, vol. 27, no. 3, pp. 387-401, May-June 1992.  

Wang & Chew, MOTL, 1991. 



Nested Equivalence Principle Algorithm (NEPAL) 

 Volume scatterers are replaced by surface scatterers; 
 By recursively nesting smaller problems within larger 

problems, the volume scattering problem can be 
solved rapidly; 

 Computational complexity is O(N1.5) in 2D and O(N2) 
in 3D for wave physics; 

 Memory usage is O(N) in 2D and O(N1.33) in 3D. 
 

W. C. Chew and C. C. Lu, “NEPAL--An algorithm for solving the 
volume integral equation,” Micro. Opt. Tech. Letters, vol. 6, no. 3, pp. 
185-188, Mar. 1993.  



Fast Direct Solvers of Dan Jiao’s Group 

 

With W.W. Chai With O. Saad 

With W.W. Chai 

Rank of matrices 



Fast Algorithms--Contd 

 Curbing the cruelty of computational complexity; 
 FFT based methods; 

 AIMS, PC-FFT, CG-FFT, G-FFT, IE-FFT, FMM-FFT  (N1.5 
log N for surface scatterers) 

 FMM—Rokhlin, Greengard, Wandzura, Appel, Barnes, Hut 

 Factorization of matrix elements (MLFMA); N log N 
for surface scatterers and electrodynamics; 
 
 
 
 
 

. 
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Smooth vs Oscillatory  Green’s Function (Kernel) 

 Higher order derivatives 
become smaller and smaller: 
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 Higher order derivatives do not 
become smaller and smaller: 

Circuit Physics Wave Physics 



The First Result that Shock the Community 
 Dense matrix system for surface scatterer with 

110,000 unknowns solved with MLFMA. 

J. M. Song and W. C. Chew, “Multilevel fast-multipole algorithm for 
solving combined field integral equations of electromagnetic 
scattering,” Mico. Opt.  Tech. Lett. , vol. 10, no. 1, pp 14-19, Sept. 
1995. 

Use 300 MB of memory 
on a single CPU SUN SPARC 10. 



 VFY218 at 8 GHz 
1999, FISC (w/ JM Song, CC Lu, SW Lee) 

                  Length    Width    Height 

  Inch           609”        350”      161” 

 8 GHz        412λ         237λ        109λ 

                    Nodes     Facets   Unknowns 

Original          2,844         5,684         8,526 

8 GHz       3,330,308  6,660,612  9,990,918 

The longest edge is 0.3λ, the average is 0.2λ, and 
the surface area is 115,789 λ2 
10-level MLFMA is used 

J. M. Song and W. C. Chew, “Large Scale Computations Using FISC,” IEEE Antennas and Propagation Society International Symposium, 
Salt Lake City, Utah, vol. 4, pp. 1856-1859, July 16-21, 2000. 



Very Large Scale Problem –  
VFY-218 (S. Velamparambil) 

 Frequency = 8 GHz; N = 10,186,446 
 Time for matrix-vector products:  119 s on 126 processors 
 Total solution time:  7 hrs and 25 mins ( 2 rhs) 

S. Velamparambil, W.C. Chew, and J.M. Song, “10 million unknowns, is it that large,” IEEE Antennas Propagation Magazine, vol.45, no.2,  
pp.43-58, April 2003.  



ScaleME – 20 Million Unknowns 
200 λ Sphere (L. Hastriter, AFIT) 

M.L. Hastriter and W. C. Chew, “Comparing Xpatch, FISC, and ScaleME Using a Cone-Cylinder, 2004 IEEE APS, vol. II, p. 
2007-2010, Monterey, CA, June 20-25, 2004. 



VFY218 - Nose on Time Domain 

JM Song 2000 Embarrassing parallelism for multi-frequencies. 



VFY 218: Current Distribution (PWTD, E. Michielssen)  

Unknowns  : 45492 
Frequency: 150 - 350 MHz 

E x 



 
Latest Research Result 

（Parallel MLFMA) April 2011 
 
 

Back 
scattering 

Forward 
scattering 

Sphere  1,063,706,700 Unknowns 

1200λ 

CPU * Thread   200*8 
MLFMA Levels 13 
Memory (TB) 3.9 
Time (min) 131 
RMS (dBsm) < 0.8 

Forward 
scattering 

X. M. Pan and X. Q. Sheng 



PEC Flamme 
538,967,040 Unknowns 

1640 

Parameters 
2 digit, 10-3 res. Error 
PW: 0H 
 
Total Time: 42.7 hours 
(16 x 4 = 64 processes) 

1.87 GHz - L7555 
 1.3 billion unknowns out of core solver, 2013 



1,042,977,546 unknowns 

NASA Almond at 3 THz 

ICTS HPC resource petition 

64 nodes of FinisTerrae 
supercomputer (1024 parallel 
processors) 

5 TB of total memory 

 8 iterations GMRES(80) 

35 hours of execution 

Residue: 0.023 

2. J.M. Taboada, L. Landesa, M.G. Araújo, J. Bértolo, F. Obelleiro, J.L. Rodríguez, J. Rivero, G. Gajardo-Silva, “Supercomputer 
solutions of extremely large problems in electromagnetics: from ten million to one billion unknowns”, European Conference on 
Antennas and Propagation (EUCAP 2011), Rome (Italy), 11-15 de abril, 2011. 

3. J. M. Taboada, M. G. Araújo, F. Obelleiro, J. L. Rodríguez, L. Landesa, “MLFMA-FFT parallel algorithm for the solution of 
extremely large problems in electromagnetics,” submitted for publication in Proceedings of the IEEE. 

Spain 



Extremely Large Problem—B. Michiels, J. Fostier, I. Bogaert, D. 
DeZutter (Belgium, 2013) 

 

3 billion unknowns 



3/28/2016 
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Present CEM Needs for CPU Design  
 Multi-scale and multi-physics. 
 Parameter extraction replaces real-world structures with 

circuit models.  
 Circuit equations generally solved with SPICE. 
 Or solved directly with electromagnetic solvers. 

Chip Package 

Chassis 

Supported by Intel SRC and HKG 
Area of Excellence 

http://upload.wikimedia.org/wikipedia/commons/e/ee/Cmos-chip_structure_in_2000s_(en).svg


Solutions to Multi-Scale Multi-EM Physics 

 Long wavelength problems for the circuits industry; 
 
 
 
 
 

 Augmented Electric Field Integral Equation (A-EFIE); 
 Equivalence Principle Algorithm (EPA) for Domain 

Decomposition Method (DDM); 
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L.J. Jiang and W.C. Chew, “A mixed-form fast multipole algorithm,” 
IEEE Trans. Antennas Propag.,   
vol. AP-53, no. 12, pp. 4145-4156, December, 2005. 

Mixed Form Fast Multipole Algorithm--MF-FMA 
(Non-Diagonal to Diagonal Translation) 
w/ L.J. Jiang 

Circuit Physics 

Circuit Physics 

Wave Physics 
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Voltage excitation 

A-EFIE Formulation, and 
LF and Broadband Scheme 

• Electric field integral equation (EFIE) 
– Most popular w/ LF breakdown 

 
 
 
 
 
 
 

• Augmented EFIE [1] 
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0n
n

ρ =∑●  Charge neutrality: 

Z. G. Qian and W. C. Chew, Microwave and Optical Technology Letters, vol. 50, no. 10, pp. 2658-2662, Oct. 2008.  
Z.-G. Qian, and W.C. Chew, IEEE Trans. Antennas and Propagat., vol. 57, no. 11, pp. 3594-3601, Nov. 2009.  
 

KVL and KCL 

KVL 

KCL 
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Movie of Current—3 GHz 

Multi-scale Package Solved with A-EFIE on a Single CPU 



Recent Advances—A-EFIE for Lossy Dielectrics 
with Tian XIA and Intel Support 

 Both the external and internal EFIE are augmented by 
the current continuity equation 



Lossy Conductor Simulations 

 Use a novel integration scheme to calculate the 
interaction matrix element for the internal lossy 
media[1].  

 This scheme converts the surface integrals on a 
triangle into line integrals along the 3 edges of the 
triangle.  
 

[1] Z. G. Qian, W. C. Chew, and R. Suaya, “Generalized impedance boundary 
condition for conductor modeling in surface integral equation,” IEEE Trans. 
Antennas Propag., vol. 55, no. 11, pp. 2354–2364, 2007. 



Conductors as Lossy Dielectrics  
(High Conductivity Case) 

 Numerical simulation: 
 A conductive transmission: 

 Conductivity σ = 106 S/m ( close to 
Nichrome’s conductivity) 

 Excited by a delta gap source at the port 

 
 

Current distribution at the surface 10 GHz 

Geometry and port 

Current at the cross section  
(center of the transmission line) 

38 



Simulation Results of Real World Problems 

 Simulation results: 
 This problem is solved at 2 GHz. The current distribution is 

shown. 
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PORT 

Current distribution at 2GHz 
 
 



Modal Expansion Methods (Qi Dai) 

 Natural mode expansions; 
 Characteristics mode expansions; 
 Eigenmode expansions; 
 Modal order reduction: 

 Circuit analysis; 
 Antenna analysis; 
 Target ID: K pulse, E pulse etc.; 
 Circuit/waveguide/cavity QED (quantum electrodynamics). 

 Not “quod erat demonstrandum”, nor “quite easily done.” 



Integral Equation Based Formulation  
(Q. Dai) 

• Natural modes • Characteristic modes 
theory (CMT)  

Electric field IE (EFIE) impedance matrix for PEC scatterers 
 



Integral Equation Based Formulation 

• Modal expansion 



Integral Equation Based Formulation 
• Fast Multipole Algorithm 

J1 J2 

J3 J4 

J1 J2 

J3 J4 



 Finite element discretization 

o Differential form interpretation of the gauge operator 

E and A: 1-form variables 
 

 

 

mapping between differential forms: 

  

 

 

 

 
 

 

 

Y.-L Li, S. Sun, Q. I. Dai, and W. C. Chew, IEEE Transactions on Magnetics, vol. 51, no. 8, pp. 1-6, 2015. 

nearly-diagonal 
matrix 

sparse approximate 
inverse (SAI) 

double-curl operator 

gauge operator 

A-Φ Formulation:  Null space elimination by a generalized 
gauge operator (Y.L. Li, S. Sun)  



 Square loop structure (PEC) 
 

 
 

frequency (Hz) 
electric size of the 
minimum mesh 

1×1010 5.0000×10-4 

1×107 5.0000×10-7 

1×104 5.0000×10-10 

1×100 5.0000×10-14 low frequency 
breakdown point 

J 

Loop size: 1000µm (outer), 800µm (inner) 
Thickness: 15µm 
Gap: 50µm 

A-Φ formulation for low frequency circuits (FEM) 

No low frequency breakdown is 
observed for E formulation due to 
the application of direct solver. 

1 

1 S. S. Mohan, M. M. Hershenson, S. P. Boyd, and T. H. Lee, “Simple accurate  
expressions for spiral inductances,” IEEE Journal of Solid-state Circuits, vol. 34, 
pp.1419-1424, 1999. 



A-Φ Formulation for Integral Equation  
(MOM Discretization) --PEC (Q. Liu and S. Sun) 

• -Formulation 
: contribution to the surface charge. 

Surface Charge 

RWG Pulse Testing with RWG basis 

RWG Pulse Testing with pulse basis 

Divergence 



f = 50 Hz 

A-Φ Formulation for Integral Equation  
—Scattering Problem (Q. Liu and S. Sun) 
 

f = 300MHz 

No. edges: 1568; No. patches: 2352 

 Good accuracy at both middle and low 
frequencies 

 Stable convergence as the mesh density 
increases  

 Convergent faster than original A-EFIE 
at low frequencies 



THE PO SCATTERED ELECTRIC FIELD BY THE NUMERICAL 
STEEPEST DESCENT METHOD –WITH Y.M. WU (FUDAN) 

A parabolic PEC patch 
The x–y quadrilateral domain 

PO approximation 
Backward scattering case 

Local tangential plane approximation 

Y. M. Wu, L. J. Jiang, W. C. Chew,  ‘‘An efficient method for 
computing highly oscillatory physical optics integral’’,  Progress in 
Electromagn. Res. PIER, pp. 211-257,2012 



High Frequency with Numerical Steepest Descent 
Path (NSDP) Method —Y.M. WU 

 



What’s in Store for Us in the Future?  Relational 
Diagram 



Maxwell’s Equations are Valid both in 
Classical Physics and Quantum Physics 

Classical Quantum 

Mendel and Wolf: Quantum Optics 

QED validated to 1 part in a trillion 



Electromagnetics and Geometry 

 Differential forms, Cartan, Deschamps, Desbrun; 
 DeRham complex; 
 Whitney forms; 
 Yang-Mills theory. 

Why is EM theory gauge invariant? 
Why does EM theory inspire Yang-Mills theory? 
Why does Yee algorithm work so well? 
Why do some finite element method/MoM not converge or have poor accuracy? 
Why is Chen-Wilton, Buffa-Christensen basis needed? 
Why divergence conforming basis? 
Why curl conforming basis? 
 

W. C. Chew, J. Applied Physics, vol. 75, no. 10, pp. 4843-4850, May 

1994.  



Differential Forms for CEM (Shu Chen) 

 Discrete exterior calculus (Desbrun 2008); 
 Inhomogeneous optical waveguides (optical fiber) 
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Casimir Force and CEM—Quantum (with J. Xiong, P.R. 
Atkins, Z.H. Ma, Q. Dai, W. Sha) 

• Casimir force calculation of two corrugated surfaces 

Geometrical mesh of one 
of the two corrugated 
surfaces Casimir force between two 

corrugated surfaces using 
EPA vs PFA (proximity 
force approximation) 



Maxwell-Schrödinger System (C. Ryu) 

Electromagnetics Equations* Schrödinger Equation 

• Stable in low frequency  Suitable for this 
system. 

• Avoids the extra step of calculating the 
potentials from the fields. 

• Charged particle under an EM 
radiation. 

Particle Current 

• Movement of the particle 
generates an electric current 
term. 

*W. C. Chew, “Vector potential electromagnetics with generalized gauge for inhomogeneous media: Formulation,” Prog. Electromagn. 
Res., vol. 149, pp. 69-84, 2014. 

S. Ohnuki of Japan 
T. Rozzi of Italy 



Simulation of an Artificial Atom (C. Ryu) 

The artificial atom forms a dipole when 
excited by a plane wave. It generates an 
electric current density as shown below. 

Simulated State Distribution 

Expected State Distribution 

Simulation of a Coherent State 



Conclusions 
 Give the historical background and EM physics of 

optics and electromagnetics; 
 Review some of our past and present works; 
 Much physical insight and mathematical finesse are 

needed to solve EM problems; 
 Computational electromagnetics (CEM) will become 

increasingly more important in nano-optics, quantum 
optics, and quantum information, and imaging; 

 Modern forms of electromagnetics (quantum and 
geometry) will inspire more computational 
electromagnetic problems; 

 Experiments have always propelled new knowledge; 
 Important that CEM/experiment researchers work 

together. 



Thank you for your attention! 

Mathematics is the Mother of Science, 

Science is the Father of Technology, 

Technology is the Gift of God! 

Are Maxwell’s Equations the Gift of God? 



The University of Illinois at Urbanan-Champaign—Oasis in a Corn Field 
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