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Knowledge and control of surfaces 
becomes critical for many modern 
technologies. Rational design of interfaces 
requires an ability to determine the surface 
structure and chemical composition at the 
atomic scale. 

Techniques & Surface Sensitivity                                                                                                

• Scanning Tunneling Microscopy (STM) 
• High-Resolution Electron Energy Loss 

Spectroscopy (HREELS) 
• Low Energy Electron Diffraction (LEED) 
• X-ray Photoemission Spectroscopy 

(XPS) 

Why Surface Science?                                                                                                 
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Techniques & Surface Sensitivity                                                                                                

• Scanning Tunneling Microscopy (STM)  
 atomic structure 

• High-Resolution Electron Energy Loss 
Spectroscopy (HREELS) 
 vibrational spectra, < 1% ML   

• Low Energy Electron Diffraction (LEED) 
 surface structure, microscopic 

• X-ray Photoemission Spectroscopy (XPS) 
 chemical composition and element 

chemical state  

Spatial resolution of the techniques                                                                                                 
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Kratos Axis Ultra DLD Imaging XPS Omicron Surface Analysis Cluster 
Surface Characterization Facility at Birck Nanotechnology Center, BRK 1077  

Dedicated XPS system: 
• Monochromatic X-ray source; 
• Charge neutralizer (any vacuum-compatible 

sample can be studied); 
• Real time imaging XPS; 
• Reaction cell (6 bar, 1000°C); 
• Sputtering gun (coronene for non-destructive 

depth profiling); 
• UPS (ultra-violet photoemission spectroscopy); 
• Attached Ar-filled glove-box.  

Multi-tool instrument: 
• XPS, HREELS, LEED; 
• State-of-art UHV STM/AFM; 
• UHV treatment chamber; 
• Gas manifolds for UHV ALD ; 
• E-beam evaporator.  
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Outline 

 Thin film measurement/characterization: graphene/Cu, BN, MoS2 – 
XPS & STM  

Inspired by 2D electronics, thermal management, catalytic applications 

 Collaborators: Prof. Gary Chen (Industrial Engineering); Prof. Timothy Fisher 
(Mechanical Engineering); Dr. Andrey Voevodin (AFRL) 

 Oxidation of phoshorene (black phosphorus) 

Inspired by 2D electronics applications 

 Collaborators: Prof.  Peide Ye (Electrical and Computer Engineering) 

 Depth profiling 

Inspired by 2D electronics, thin films, catalysis  

 Collaborators: Prof. Fabio Ribeiro (Chemical Engineering); Prof. Christophe Copéret 
(ETH) 
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Basic Principles of STM Graphene – STM 

• When a bias voltage (mV - V) is applied, electrons tunnel between the tip and sample. A 
tunneling current is in the range of 10 pA to 10 nA. 

• Tunneling current is proportional to e-2κd and decreases by a factor of ~10 when d is 
increased by 1 Å. 

• Using a feedback look, we try to keep the tunneling current constant (constant distance 
between the tip and the surface(???)).   

Distance, d, is a few Angstroms (Å).  

The STM schematics is by Michael Schmid - Michael Schmid, TU Wien; adapted from the IAP/TU Wien STM Gallery, CC BY-SA 2.0 
at, https://commons.wikimedia.org/w/index.php?curid=180388 
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Graphene by STM 

~2.5 Å 

Structure of highly oriented pyrolytic graphite 
(HOPG) 

STM image of HOPG 

~2.5 Å 

STM image of a few layers of 
graphene on a Cu foil 

The sample provided by Prof. Gary Chen 
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Graphene – STM 
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STM image of a few layers of graphene on a Cu foil 
with areas of single layer graphene  

The sample provided by Prof. Gary Chen 
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Graphene – XPS 
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The process of using photons 
(light) to remove electrons from 
a bulk material is called 
photoemission. 

Basic Principles of XPS 
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Graphene – XPS 
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Survey and high resolution XPS spectra of few layer graphene.  
Growth conditions:  H2:CH4 =10:1; 3 min – H2 + 1min – H2/CH4 mixture. 
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In collaboration with Prof. Timothy Fisher and Prof. Andrey Voevodin 

8 layers of graphene  
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Graphene – XPS 
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TEM image of few layer graphene.  
Growth conditions:  H2:CH4 =10:1; 3 min – H2 + 1min – 

H2/CH4 mixture. 
 
XPS: 8 layers of graphene!!! 
TEM: ~7 layers of graphene!!! 

TEM shows anywhere from 1 to 6 graphene 
layers. XPS measured 2.9 layer of graphene. 
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Graphene – XPS 
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Raman (488 nm) of few layer graphene. Growth conditions:  H2:CH4 =10:1; 
3 min – H2 + 1min – H2/CH4 mixture. 
 
XPS: 8 layers of graphene!!! 
TEM: 7 layers of graphene!!! 
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MoS2/sapphire – XPS 
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The ratio between sulfur and molybdenum was 2.1±0.1. 
 

XPS: 5.7±0.7 layers (depending on an analysis spot) 
TEM: 7-8 layers 

In collaboration with Prof. Timothy Fisher and Prof. Andrey Voevodin 
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BN/sapphire – XPS 
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The ratio between nitrogen and boron was 0.8. 
 

XPS: 2.0±0.2 nm 
TEM: 1.5-18 nm 

In collaboration with Prof. Timothy Fisher and Prof. Andrey Voevodin 
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2D materials – XPS 
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Kyle Christopher Smith; David A Saenz; Dmitry Zemlyanov; Andrey A Voevodin (2012), "XPS Thickness Solver,” 
http://nanohub.org/resources/xpsts. (DOI: 10.4231/D3N29P603). 

XPS Thickness Solver 
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2D materials – STM and XPS 
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• Identification of  graphene by STM 

• Measurement of average thicknesses of a few layers of 
graphene, MoS2 and BN by XPS  
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Phosphorene degradation (black phosphorus) - XPS 
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What is Phosphorene? 

•  2D Layered Material 
•  Puckered Honeycomb Structure 
•  Stacking of Monolayer ‘Phosphorene’ 
• Potential application - microelectronics  

 In collaboration with Prof.  Peide Ye 
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Phosphorene degradation (black phosphorus) - XPS 
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 Sample cleaved in the inert 
environment (glove box); 

 Possible degradation sources: 
oxygen (O2) and water (H2O) – 
treatment in the reaction cell; 

 All transfers were done under UHV 
without contact to air.  

 

 

Kratos Axis Ultra DLD Imaging XPS 

 In collaboration with Prof.  Peide Ye 
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Phosphorene degradation (black phosphorus) - XPS 
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Why XPS? 
Chemical Shift 
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Phosphorene degradation (black phosphorus) - XPS 
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5% O2/Ar at room temperature 

 P has three chemical states: the major 
product was P4O10. 

 The P-O-P and O=P components were 
detected in the O 1s spectrum 

5% H2O/Ar at room temperature 

 P has two chemical states: the major 
product was like-HPO3. 

 The P-O-P and P-O-H components 
were detected in the O 1s spectrum 

 In collaboration with Prof.  Peide Ye 
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Phosphorene degradation (black phosphorus) - XPS 
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5%O2 & 2.3%H2O in Ar Treatment 

 The major product was P4O10. 

 The P-O-P and O=P components were detected in the O 1s spectrum 

 In collaboration with Prof.  Peide Ye 
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Phosphorene degradation (black phosphorus) - XPS 
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 In collaboration with Prof.  Peide Ye 

XPS result can be quantified in the terms of coverage and/or oxide 
thickness 
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Phosphorene degradation (black phosphorus) - XPS 
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5%O2 & 2.3%H2O in Ar Treatment 

0.00 

0.20 

0.40 

0.60 

0.80 

1.00 

1.20 

1.40 

1.60 

1.80 

0.00 

1.00 

2.00 

3.00 

4.00 

5.00 

6.00 

7.00 

8.00 

9.00 

0 100 200 300 400 

C
ov

er
ag

e,
 M

L 

Time, min 

Oxygen coverage 

Oxygen coverage 
in O2&H2O, ML 
Oxygen coverage 
in O2, ML 
Oxygen coverage 
in H2O, ML 

-0.5 

0.0 

0.5 

1.0 

1.5 

2.0 

2.5 

3.0 

3.5 

4.0 

4.5 

0.0 

5.0 

10.0 

15.0 

20.0 

25.0 

30.0 

35.0 

0 100 200 300 400 
Th

ic
kn

es
s,

 A
 

Time, min 

P4O10 thickness 

P2O10 in 
O2&H2O, Å 
P2O10 in O2, Å 

P2O10 in H2O, Å 

 Oxidation rate in O2+H2O is about 10× higher than with only O2 or H2O, respectively. 

In collaboration with Prof.  Peide Ye 
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Phosphorene degradation (black phosphorus) - XPS 
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 In collaboration with Prof.  Peide Ye 

 In steam, the productions is like-HPO3. 

 In oxygen and wet oxygen the productions is P4O10. 

 Oxidation rate in wet oxygen is about 10× higher than with only oxygen or water respectively. 
Intermediates (like-HPO3?) make the oxidation much faster. 

(a) Schematic view of a fabricated back-gate modulated BP FET. (b) Prior to ALD integration on BP, a 0.8 nm Al 
protecting layer was pre-deposited on BP surface and waited to be oxidized in ambient condition. (c) 15 nm Al2O3 was 
then deposited with TMA and water as precursors at 200 ºC. (d) 15 nm Al2O3 was directly deposited with TMA and 
water as precursors at 200 ºC without applying 0.8 nm Al protecting layer. 
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Depth Profiling - XPS 
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Depth Profiling - XPS 
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Si wafer 
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Depth Profiling - XPS 
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Depth Profiling - XPS 
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 In collaboration with Prof.  Fabio Ribeiro and Prof. Christophe Copéret 

Sample 2: Ni-rich layer without thermal treatment 
Sample 3: Ni-rich layer with 350°C thermal treatment in H2 flow for 12 h 
Sample 4: Ni-rich layer with 700°C thermal treatment in H2 flow for 12 h 
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Depth Profiling - XPS 
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 In collaboration with Prof.  Fabio Ribeiro and Prof. Christophe Copéret 
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Regular catalyst 

Flat model catalyst 

 Model catalysts can be readily studied by the surface analysis tools. 
 Active phase is “open” for analysis 
 Reverse catalysts  allow to control an oxide island perimeter and “enhance” 

boundary effects. 

Reverse model catalyst 

Oxide island 

metal 

metal 
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ALD: Examples of substrates and precursors 

 Single crystals used as substrates: Pt(111), Pd(111), Cu(111), TiO2(110). 

 

 Precursors: Trimethylaluminum (TMA), bis(η5-cyclopentadienyl)iron (ferrocene), 
palladium(II) hexafluoroacetylacetonate (Pd(hfac)2), diethylzinc, zirconium-t-butoxide  
(Zr+IV(OC4H9)4), etc. 

 

 Model Catalysts: Al2O3/Pt(111), Al2O3/Pd(111), Al2O3/Cu(111), ZrOx/Pd(111), 
ZrOx/Cu(111), ReO/Pt(111), FeO/Pt(111), TiOx/Pt(111), PdZn/Pd(111), Pd/TiO2(110), etc. 

1. Gharachorlou et al. ACS APPLIED MATERIALS & INTERFACES, 6 (2014), p.14702 
2. Detwiler et al. JOURNAL OF PHYSICAL CHEMISTRY C, 119 (2015), p. 2399 
3. Gharachorlou et al. ACS APPLIED MATERIALS & INTERFACES, 7 (2015), p. 16428 
4. Detwiler et al. SURFACE SCIENCE, 640 (2015), p. 2 
5. Paul et al. CHEMISTRY OF MATERIALS, (2015) 10.1021/acs.chemmater.5b01778 
6. Gharachorlou et al. JOURNAL OF PHYSICAL CHEMISTRY C,  119 (2015), p. 19059 
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Thank you! 
 

Questions? 
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