Multi-Scale Modeling of Self-Heating Effects in Nano-Devices

S. S. Qazi¹, A. R. Shaik¹, R. L. Daugherty¹, A. Laturia¹, X. Guo², E. Bury³, B. Kaczer³, K. Raleva⁴ and D. Vasileska¹

¹School of Electrical Computer and Energy Engineering, Arizona State University, Tempe, AZ, USA

²School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA

³IMEC, Belgium

⁴Faculty of Engineering and Information Technology, University Sts Cyril and Methodius, Skopje, Republic of Macedonia

Outline

- Motivation
- Device Level Modeling
- Circuit/Interconnect Level Modeling
- Sample Simulation Results
- Conclusions

Transistor Scaling

Two avenues for reducing transistor size:

1. Alternative Materials

Strained Si, strained SiGe High-K dielectrics 2. Alternative Transistor Designs

FD SOI Devices Dual-Gate Devices FinFETs MugFETs

22nm and 14nm technology nodes from Intel are FinFET devices

Why Electro-Thermal Modeling?

Reason for Observation of Self-Heating Front gate (Gf) FOX BOX Substrate (Gb)

Fully depleted (FD) body

Material	k _{th} (W/mK)
Si	148
Ge	60
Silicides	40
Si (10 nm)	13
SiO ₂	1.4

Theoretical Model for Thermal Transport through Phonons

Modeling of Electro-Thermal Effects

We solve self-consistently the:

- Boltzmann Transport Equation for the Electrons (using the Monte Carlo method) self-consistently coupled to 2D/3D Poisson Equation Solvers
- Energy Balance Equations for the Acoustic and Optical Phonons

J. Lai and A. Majumdar, "Concurrent thermal and electrical modeling of submicrometer silicon devices", J. Appl. Phys. , Vol. 79, 7353 (1996).

$$C_{LO} \frac{\partial T_{LO}}{\partial t} = \frac{3nk_B}{2} \left(\frac{T_e - T_{LO}}{\tau_{e-LO}} \right) + \frac{nm^* v_d^2}{2\tau_{e-LO}} - C_{LO} \left(\frac{T_{LO} - T_A}{\tau_{LO-A}} \right)$$

$$C_A \frac{\partial T_A}{\partial t} = \nabla (k_A \nabla T_A) + C_{LO} \left(\frac{T_{LO} - T_A}{\tau_{LO-A}} \right) + \frac{3nk_B}{2} \left(\frac{T_e - T_L}{\tau_{e-L}} \right)$$

Monte Carlo – Energy Balance Coupling

K. Raleva, D. Vasileska, S. M. Goodnick and M. Nedjalkov, Modeling Thermal Effects in Nanodevices, IEEE Transactions on Electron Devices, vol. 55, issue 6, pp. 1306-1316, June 2008

Flow-chart of Electro-Thermal Solver

Experimental methods for measuring the temperature of hotspot

1. Thermoreflectance Method^{1,2}

Emphasis has been on how to measure average temperature but not the peak hotspot temperature.

2. IMEC Heater Sensor Approach³

1. Nanoscale thermal transport. II. 2003–2012, David G. Cahill, Paul V. Braun, Gang Chen, David R. Clarke, Shanhui Fan, Kenneth E. Goodson, Pawel Keblinski, William P. King, Gerald D. Mahan, Arun Majumdar, Humphrey J. Maris, Simon R. Phillpot, Eric Pop, and Li Shi, Applied Physics Reviews 1, 011305 (2014)

2. Bias-dependent MOS transistor thermal resistance and non-uniform self-heating temperature, Xi Wang, Younes Ezzahri, James Christofferson and Ali Shakouri, J. Phys. D: Appl. Phys. 42 (2009)

3. Uncovering the temperature of the hotspot in nanoscale devices, Katerina Raleva, Erik Bury, Ben Kaczer and Dragica Vasileska, Computational Electronics (IWCE), 2014 International Workshop on , vol., no., pp.1-3, 3-6 June 2014

IMEC Scheme for Hot-Spot Temperature Measurements (Modeling of a Circuit)

E. Bury, B. Kaczer, P. J. Roussel, R. Ritzenthaler, K. Raleva, D. Vasileska, G. Groeseneken, "Experimental validation of selfheating simulations and projections for transistors in deeply scaled nodes", in Proceedings of IEEE, Reliability Physics Symposium, 2014 IEEE International, pp. XT. 8.1-XT. 8.6.

8, pp.83-114 (1995)

Katerina Raleva, Erik Bury, Ben Kaczer, Dragica Vasileska, "Uncovering the temperature of the hotspot in nanoscale devices", in *Proceedings of IEEE, Computational Electronics (IWCE), 2014 International Workshop on*, pp. 104-106.

Convergence in Multi-Scale Analysis

Results from Multiscale Electro-Thermal Simulation

Lattice Temperature vs. Position

Global Lattice Temperature Profile

Global Optical Phonon Temperature Profile

Max Temperature = 356.42K

Optical Phonon Temperature vs. Position

Max Temperature = 320.49K

Global Simulation Results: Proof of Concept

Conclusions

- A Multi-Scale simulator has been developed to model the heater-sensor combination + interconnects.
- The Electro-Thermal device simulator is a multi-scale solver that selfconsistently solves the BTE for the electrons with the energy balance equations for the optical and acoustic phonon bath.
- At the circuit level, GIGA3D module from Silvaco was used to solve for the lattice temperature and hence obtain the boundary conditions for the Electro-Thermal Device simulator.
- Simulation results for the average sensor temperature are in agreement with experimental measurements.

Thank You

Suleman Qazi Arizona State University Tempe, AZ sqazi@asu.edu

