Modeling of Quantum Cascade Laser Sources with Giant Optical Nonlinearities

Christian Jirauschek Institute for Nanoelectronics TU München, Germany

- Modeling of quantum cascade lasers
- Inclusion of optical cavity field
- THz difference frequency generation in QCL structures
- Mode-locked QCLs and frequency combs
- Conclusion

Quantum Cascade Laser

Conventional lasers/light sources

Use optical transitions in atoms, molecules, lattices,...

- Usually in infrared, visible or ultraviolet regime
- \Rightarrow Scientifically underdeveloped terahertz gap
- ⇒ No practical compact diode lasers in mid-infrared

Quantum cascade laser (QCL)

Use nanostructure as "artificial atom"

- Wavelength does not depend on material, but can be tailored by "quantum engineering" Wavelength does not depend on material,
- \Rightarrow QCL covers terahertz and mid-infrared

Use many transitions in a series ("cascade") A single electron can emit multiple photons \Rightarrow Increased optical power and efficiency

 $\Lambda F = hf$

Quantum Engineering of Active Region

Optical gain characteristics can be custom-tailored
 Mid-infrared and THz ranges become accessible

Artificial giant optical nonlinearities can be integrated

Frequency conversion structures

Based on frequency mixing $f_3=f_1-f_2$ Mode-locking & frequency combs
Based on nolinear coherent interaction

Ensemble Monte Carlo (EMC)

Boltzmann Equation and Scattering

Modeling of quantum cascade lasers

- Inclusion of optical cavity field
- THz difference frequency generation in QCL structures
- Mode-locked QCLs and frequency combs
 Conclusion

Inclusion of Optical Cavity Field

Carrier-Light Coupling in Monte Carlo

Simulation of High Efficiency Mid-Infrared QCL

Modeling of quantum cascade lasers

- Inclusion of optical cavity field
- THz difference frequency generation in QCL structures
- Mode-locked QCLs and frequency combs
 Conclusion

THz Difference Frequency Generation QCL Structure

Ideal THz source

- Room temperature operation
- Broadband tunability

• THz output power in mW range

Technische Universität München

THz DFG QCL source

- M. Belkin et al., Appl. Phys. Lett. 92, 201101 (2008)
- 1.0-4.6 THz

Q.Y. Lu et al., Appl. Phys. Lett. 101, 251121 (2012)

1.7-5.25 THz

K. Vijayraghava et al., Nature Comm. 4, 2021 (2013)

1.9 mW pulsed, 3 µW cw (at room temperature)

M. Razeghi et al., Opt. Express 23, 8462 (2015)

Modeling of Nonlinear Susceptibility

$$\chi^{(2)} = \frac{1}{\hbar^2 \varepsilon_0 L_P} \sum_{\ell,m,n} d_{\ell m} d_{m n} d_{n \ell} n_E^{2D} \int_0^{\infty} f_\ell \left(K_{\ell m n} - K_{m \ell n} \right) d\varepsilon,$$

$$K_{\ell m n} = \left(\frac{1}{\omega_{n \ell} - i\gamma_{n \ell} - \omega} + \frac{1}{\omega_{n m} + i\gamma_{n m} + \omega} \right) \left(\frac{1}{\omega_{m \ell} - i\gamma_{m \ell} + \omega_2} + \frac{1}{\omega_{m \ell} - i\gamma_{m \ell} - \omega_1} \right)$$

$$L_P: \qquad \text{Period length} \qquad \gamma_{m n} (\varepsilon): \quad \text{Optical linewidth}$$

 $\gamma_{mn}(\varepsilon)$: Opti d_{mn} : Dipo ω_{mn} : Reso $\omega_{1,2}/\omega$: Mid-

Optical linewidth Dipole matrix element Resonance frequency Mid-IR/THz frequencies

Multi-Domain Simulation Approach

Comparison Simulation - Experiment

Temperature Degradation of THz Power

Contributions of Individual Subband Triplets

Susceptibility of Widely Tunable THz DFG Structure

Modeling of quantum cascade lasers

- Inclusion of optical cavity field
- THz difference frequency generation in QCL structures
- Mode-locked QCLs and frequency combs
 Conclusion

Extended Maxwell-Bloch Equations

Field:
$$\frac{n}{c}\partial_{t}\boldsymbol{E} = -\partial_{z}\boldsymbol{E} - i\frac{kN\mu\Gamma}{2\epsilon_{0}n^{2}}\boldsymbol{\eta} - \frac{1}{2}\ell\left(\boldsymbol{E}\right)\boldsymbol{E}$$
Polarization:
$$\partial_{t}\boldsymbol{\eta} = \frac{i\mu}{2\hbar}\boldsymbol{E}\Delta - \frac{\eta}{T_{2}}$$
Inversion:
$$\partial_{t}\Delta = \frac{\Delta_{p}-\Delta}{T_{1}} + \frac{i\mu}{\hbar}\left(\boldsymbol{E}^{*}\boldsymbol{\eta} - c.c.\right)$$

Rate Equations

Coherent Effects

Manifestation of Coherent Effects

Simulation of Actively Mode-Locked QCLs

Multi-Domain Simulation Approach

Maxwell-Bloch approach requires lifetimes/ transition rates as input parameters

Empirical or guessed values are used, affecting the quantitative accuracy EMC self-consistently evaluates scattering based on the corresponding Hamiltonians

 Computational burden impedes inclusion of the full spatiotemporal dynamics

Coupled Maxwell-Bloch/EMC approach

QCL-Based Frequency Combs

Terahertz Frequency Comb

Conclusion

C. Jirauschek and T. Kubis, Appl. Phys. Rev. 1, 011307 (2014)

Acknowledgment

Group members Alpar Matyas Petar Tzenov Hesham Okeil Ivan Ezhov

Collaboration

Tillmann Kubis (Purdue) Mikhail Belkin (The University of Texas at Austin) Paolo Lugli (Technische Universität München) Markus C. Amann (Technische Universität München)

Funding

Emmy Noether-Programm

Forschungsgemeinschaft

Heisenberg-Programm

Forschungsgemeinschaft

Deutsche

Technische Universität München

29

Institute for Nanoelectronics