Atomistic Modeling of Nano Devices: From Qubits to Transistors

By Rajib Rahman

Purdue University, West Laffayette, IN

View Presentation

Additional materials available (4)

Licensed under General Performance Usage.

Published on

Abstract

While  the  end  of  Moore’s  Law  marks  the  end  of  the  glory  days  of  electronic  devices,  it  also  opens  up   opportunities   to  explore   novel  concepts   in  computation   and   device   design.   Use  of  the  spin   degrees   of  freedom   has   attracted   much  attention   in  both   classical  computing   and   in  the  emerging   field  of  quantum   computing.   However,   spins  at   the  nanoscale  are  susceptible  to  the  inhomogeneous   local  environment  of  the  devices  through  their  coupling  to  charge   and   valley  degrees   of  freedom,   and   to  other   atoms  of  magnetic   nature.   To  understand   how   these  atomic  scale  magnetic   interactions   manifest  in   the  behavior   of  devices,  atomistic  modeling   techniques   are   needed   that  unify  the  treatment   of   spin  and   charge   and   provide   a   description   of  electronic   structure  and   carrier   transport   from   a  fully  quantum   mechanical   standpoint.   In  this  talk,  I  will   describe   such  a  framework   that  can  capture   complex  interactions   ranging   from  exchange   and  spin-orbit-valley  coupling  in  spin  qubits to  non-equilibrium   charge  transport  in  tunneling  transistors.  I  will  show  how   atomistic  full  configuration  interaction  calculations  of  exchange  in  donor  qubits help  to  propose  an  improved  two-qubit gate   in  silicon.  I  will  also   show   how   spin-orbit-valley   coupling   due   to  interface   roughness   affects  the  spin  resonance   frequencies   and   spin  lifetimes  in  silicon  quantum   dots.  Finally,   I  will  show   how   atomistic  transport   simulations  help   to   identify  the  best  2D   materials   and   designs   for  tunnel   transistors.

Bio

Rajib Rahman Rajib Rahman  obtained  his  PhD  degree  in  Electrical  and  Computer  Engineering   from  Purdue  University  in  2009  in  the  area  of   computational   nanoelectronics.   Subsequently,   he  was  a  postdoctoral   fellow   in  Sandia   National   Laboratories   in  the   Silicon   Quantum   Information   Science   and  Technology   group.   Since  2012,   he  has  been  employed   as  a  Research  Assistant   Professor  in  the  Network   for   Computational   Nanotechnology   (NCN)  at  Purdue.   Rajib develops   and  employs   atomistic   simulation   methods   to  model   spin  qubits in   semiconductors   taking   into   account  their   complex   interaction   with  the   environment   in  the  form  of  electron-­electron,   electron-­phonon,   and   magnetic   interactions.   He  collaborates   with  leading   experimental   groups  from  Australia,   Netherlands,   and  USA  in  the  field  of  silicon  quantum   computing.   At  Purdue,   Rajib also   works  on  atomistic   transport   simulations   of  energy  efficient   transistors  in  emerging   2D  materials.

Cite this work

Researchers should cite this work as follows:

  • Rajib Rahman (2016), "Atomistic Modeling of Nano Devices: From Qubits to Transistors," https://nanohub.org/resources/23993.

    BibTex | EndNote

Time

Location

1001 Wang, Purdue University, West Lafayette, IN

Tags

Atomistic Modeling of Nano Devices: From Qubits to Transistors
  • Atomistic Modeling of Nano Devices: From Qubits to Transistors 1. Atomistic Modeling of Nano Dev… 0
    00:00/00:00
  • The Future of Electronics? 2. The Future of Electronics? 26.893560226893563
    00:00/00:00
  • Challenge for device modeling? 3. Challenge for device modeling? 79.946613279946618
    00:00/00:00
  • Atomistic Modeling Approach 4. Atomistic Modeling Approach 123.82382382382383
    00:00/00:00
  • Impact on Experiments 5. Impact on Experiments 192.32565899232566
    00:00/00:00
  • The Future of Electronics? 6. The Future of Electronics? 347.74774774774778
    00:00/00:00
  • Quantum Computing 7. Quantum Computing 368.70203536870207
    00:00/00:00
  • History: Semiconductor Quantum Computing 8. History: Semiconductor Quantum… 472.77277277277278
    00:00/00:00
  • Kane's Quantum Computer 9. Kane's Quantum Computer 551.45145145145148
    00:00/00:00
  • History: Semiconductor Quantum Computing 10. History: Semiconductor Quantum… 664.63129796463136
    00:00/00:00
  • 2008-2012: Addressing single donors with transport 11. 2008-2012: Addressing single d… 727.19386052719392
    00:00/00:00
  • History: Semiconductor Quantum Computing 12. History: Semiconductor Quantum… 1041.9085752419087
    00:00/00:00
  • 2007-2015: Implementation of Kane A-Gate 13. 2007-2015: Implementation of K… 1065.7991324657992
    00:00/00:00
  • History: Semiconductor Quantum Computing 14. History: Semiconductor Quantum… 1175.1418084751419
    00:00/00:00
  • Kane J-Gate: Problem 1 15. Kane J-Gate: Problem 1 1259.2926259592928
    00:00/00:00
  • Kane J-gate: Problem 2 16. Kane J-gate: Problem 2 1318.4851518184853
    00:00/00:00
  • Solutions for 2-qubit gate 17. Solutions for 2-qubit gate 1347.3473473473473
    00:00/00:00
  • Solution: Detuning Gates 18. Solution: Detuning Gates 1381.4481147814481
    00:00/00:00
  • Detuning based J-tuneability 19. Detuning based J-tuneability 1422.9896563229897
    00:00/00:00
  • Boost J-tuneability even more? 20. Boost J-tuneability even more? 1447.1805138471805
    00:00/00:00
  • Exchange Calculations: Atomistic Full Configuration Interaction Method 21. Exchange Calculations: Atomist… 1520.2535869202536
    00:00/00:00
  • Schemes for long distance coupling with exchange 22. Schemes for long distance coup… 1580.7807807807808
    00:00/00:00
  • History: Semiconductor Quantum Computing 23. History: Semiconductor Quantum… 1669.4361027694363
    00:00/00:00
  • Spin-orbit Coupling in Si QDs 24. Spin-orbit Coupling in Si QDs 1687.6543209876543
    00:00/00:00
  • Valley dependent spin splitting 25. Valley dependent spin splittin… 1904.2375709042376
    00:00/00:00
  • ESR frequency in 2 expts. 26. ESR frequency in 2 expts. 1963.963963963964
    00:00/00:00
  • ESR frequency with B-field angle 27. ESR frequency with B-field ang… 2005.8725392058727
    00:00/00:00
  • Atomistic treatment of SOC 28. Atomistic treatment of SOC 2035.201868535202
    00:00/00:00
  • Two cases: Smooth & Rough surface 29. Two cases: Smooth & Rough surf… 2097.2305638972307
    00:00/00:00
  • Calculated ESR frequency vs B-field angle 30. Calculated ESR frequency vs B-… 2130.8975642308978
    00:00/00:00
  • Atomistic SOC: comparison with experiment 31. Atomistic SOC: comparison with… 2187.8878878878882
    00:00/00:00
  • Physics of Si QDs 32. Physics of Si QDs 2214.3810477143811
    00:00/00:00
  • The Future of Electronics? 33. The Future of Electronics? 2249.5829162495829
    00:00/00:00
  • Vdd Scaling 34. Vdd Scaling 2423.8571905238573
    00:00/00:00
  • Steepness: MOSFET vs Tunnel FET 35. Steepness: MOSFET vs Tunnel FE… 2443.677010343677
    00:00/00:00
  • Why 2D materials for TFET? 36. Why 2D materials for TFET? 2478.3783783783783
    00:00/00:00
  • Atomistic simulation of 2D TMD devices 37. Atomistic simulation of 2D TMD… 2542.475809142476
    00:00/00:00
  • Comparison among TMD TFETs 38. Comparison among TMD TFETs 2569.3360026693363
    00:00/00:00
  • Solution: Dielectric Engineered TFET (DE-TFET) 39. Solution: Dielectric Engineere… 2597.6643309976644
    00:00/00:00
  • Atom to Device: Modeling Methods 40. Atom to Device: Modeling Metho… 2664.5311978645314
    00:00/00:00
  • 41. "Atom to Device" Approach in S… 2760.4270937604274
    00:00/00:00
  • Conclusion: Material to Device Simulation 42. Conclusion: Material to Device… 2876.0093426760095
    00:00/00:00