Nanometer Scale Patterning and Processing

Spring 2016

Lecture 2 Overview of Lithography

Anatomy of a CMOS Transistor

(Xiao 2012) Figure 1.14 (a) The circuit of a CMOS inverter, (b) an example of a textbook-style design layout of a CMOS inverter, and (c) the cross section of the textbook layout.

ECE 695 Nanometer Scale Patterning and Processing

(Xiao 2012) Figure 1.15 CMOS inverter in a real-life IC layout.

Masks: Where Designs are Transferred to Silicon

(Xiao 2012) Figure 1.18 (a) A mask and (b) reticle. (SGS Thompson).

(Xiao 2012) Figure 1.16 (a) Binary mask and (b) an attenuated phase shift mask.

Example: Layout and Binary Masks for a CMOS Inverter (Xiao 2012) Figure 1.17

ECE 695 Nanometer Scale Patterning and Processing

PURDUE

RIT's Advanced CMOS Process

ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING

RIT's Advanced CMOS Process Dr. Lynn Fuller

webpage: http://www.rit.edu/~lffeee/

Microelectronic Engineering Rochester Institute of Technology 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (585) 475-2035 Fax (585) 475-5041

email: LFFEEE@rit.edu

microE webpage: http://www.microe.rit.edu

9-20-06 AdvCmos2006.ppt

© September 20, 2006 Dr. Lynn Fuller

Page 5

Rochester Institute of Technology

LEVEL 1 PHOTO - Shallow Trench Isolation

© September 20, 2006 Dr. Lynn Fuller

Page 7

Rochester Institute of Technology

RIT's Advanced CMOS Process CONTINUE THE ETCH THRU PAD OXIDE AND INTO THE SILICON Remove Photoresist © September 20, 2006 Dr. Lynn Fuller Page 8 Rochester Institute of Technology

Microelectronic Engineering

RIT's Advanced CMOS Process

REFERENCES

- Silicon Processing for the VLSI Era, Volume 1 Process Technology, 2nd,
 S. Wolf and R.N. Tauber, Lattice Press.
- 2. The Science and Engineering of Microelectronic Fabrication, Stephen A. Campbell, Oxford University Press, 1996.

Applications of Nanotechnology

- Electronics and information processing
 - Integrated circuits
- Information storage and transmission
 - Hard disks (conventional)
 - Optical communication and information processing (photonics, e.g. Silicon photonics)
- Light sources (LEDs, etc.)
- Chemical and biological sensors, Catalysis
- Micro- and nanomechanical structures
 - Airbag sensors, gyroscopes, MEMS camera focusing lens
- Medical diagnostics, therapeutics, etc.
 - Microfluidics, biosensing and sorting
- Nanorobots ??
 - Fictions ©
- Microscopy and metrology:
 - Observation at the nanoscale
 - Measurement with nanometer precision and accuracy
- 3D Printing

Contents courtesy of Prof. Bo Cui

Classification of Top-Down Nanofabrication

Additive Methods:

- Thin film deposition
- Physical vapor deposition (PVD): sputtering, e-beam or thermal evaporation
- Chemical vapor deposition (CVD): metal-organic CVD, plasma-enhanced CVD, low pressure CVD...
- Epitaxy: molecular beam epitaxy (MBE), liquid-phase epitaxy...
- Electrochemical deposition: electro- and electroless plating (of metals)
- Oxidation (growth of thermal SiO₂)
- Spin-on and spray-on film coating (resist coating)
- Printing techniques: ink-jet, micro-contact printing, 3D printing
- Assembly: wafer bonding, surface mount, wiring and bonding

Subtractive methods:

- Etching: wet chemical etching, reactive ion etching; ion beam sputter etching, focused ion beam etching.
- Tool-assisted material removal: chemical-mechanical polishing, chipping, drilling, milling, sand blasting.
- Radiative and thermal treatment: laser ablation, spark erosion.

Modifying methods:

- Radiative treatment: resist exposure, polymer hardening
- Thermal annealing: crystallization, diffusion, change of phase
- Ion beam treatment: implantation, amorphization
- Mechanical modification: plastic forming and shaping, scanning probe manipulation

Contents courtesy of Prof. Bo Cui

ECE 695 Nanometer Scale Patterning and Processing

What does ECE 695 specialize in?

- We study how to generate the structures of interest at nanometer length scale.
 - Lithography
 - Etching

ECE 695

- Planarization
- Deposition
- We do not focus on the material growth or properties
 - Material properties are important for all nanofabrication processes

History of Lithography

- Lithography (Greek for "stone drawing"); based on repulsion of oil and water.
- Invented by Alois Senefelder in 1798.
- Used for book illustrations, artist's prints, packaging, posters, etc.
- In 1825, Goya produced a series of lithographs.
- In the 20th and 21st century, become an important technique with unique expressive capabilities in the art field.
- Nowadays used in semiconductor manufacturing (integrated circuit IC).

Two Aspects of Lithography:

Pattern Generation

Pattern Replication

Resolution, uniformity, overlay, throughput ECE 695 Nanometer Scale Patterning and Processing

PURDUE UNIVERSITY.

How are patterns generated from design: electron-beam lithography

The Vistec VB6 UHR-EWF electron-beam lithography tool

ECE 695

Classification of Lithography

Lithography with particles or waves

- •Photons: photolithography
- •X-rays: from synchrotron, x-ray
- lithography
- •Electrons: electron beam
- lithography (EBL)
- •lons: focused ion beam (FIB)
- lithography

Imprint lithography (molding)

- •Soft Lithography: micro-contact-printing...
- Hot embossing
- •UV-curable imprinting

SPM-lithography

- AFM
- •STM
- •DPN (dip-pen nanolithography)

Pattern replication: parallel

(masks/molds necessary)

High throughput, but not easy to change pattern

- Optical lithography
- X-ray lithography
- •Imprint lithography
- Stencil mask lithography

Pattern generation: serial

(Slow, for mask/mold making)

- E-beam lithography (EBL)
- •Ion beam lithography (FIB)
- •SPM-lithography
 - o AFM, STM, DPN

Multiple serial (array)

- •Electron-beam micro-column array (arrayed EBL)
- Zone plate array lithography
- Scanning probe array

Lithography on surfaces

- Optical/UV lithography
- E-beam lithography
- •FIB lithography
- X-ray lithography
- Spm-lithography
 - o AFM
 - o STM
 - DPN (dip-pen nanolithography)
- •Imprint lithography
 - Soft lithography
 - Hot embossing
 - UV imprinting
- Stencil mask lithography

3D Lithography

- Two photon absorption
- Stereo-lithography

Contents
courtesy of Prof.
Bo Cui

ECE 695 Nanometer Scale Patterning and Processing

List of Lithography Techniques (I)

- High resolution photon-based lithography.
 - Deep UV lithography with high NA and/or low k1 factor.
 - Extreme UV lithography, why selected as next generation lithography by industry.
 - X-ray lithography, X-ray optics, mask, LIGA process.
- Electron beam lithography.
 - Electron optics, e-beam sources, instrumentation.
 - Electron-matter interaction, proximity effect, pattern design, alignment.
 - Resists and developers, resolution limits, contrast, sensitivity, etching selectivity.
 - CAD tool, fraction tool (CATS, Cview, etc)
- Nano-patterning by focused ion beam.
 - Ion source, ion optics, instrumentation.
 - Ion-matter interaction, focused ion beam etching and lithography.
 - Focused ion beam induced deposition, mechanism and applications.
 - Focused electron beam induced deposition.
- Nanoimprint lithography (NIL).
 - Thermal NIL, resist, thermoplastic properties of polymers, tools.
 - UV-curable NIL, resist, whole wafer vs. step-and-flash imprint, tools.
 - Alignment, mold fabrication, defects, limits.
 - Reverse NIL, NIL using thermal-set resist, pulsed laser assistant NIL of metals.
 Contents courtesy of Prof. Bo Cui

List of Lithography Techniques (II)

Nano-patterning by scanning probes.

- AFM-based, local oxidation and dip-pen lithography.
- NSOM-based, near field optics, exposure of resist.
- STM-based, manipulation of atoms and exposure of resist.

Soft lithography.

- Micro-contact printing of chemical patterns, capabilities and resolution limits.
- Nano-transfer printing.

Other top-down patterning techniques.

- Focused proton beam lithography.
- Pattern transfer by stencil mask.

Nano-patterning by self assembly.

- Anodized aluminum oxide, application as template for nano-wire growth.
- Nano-sphere lithography, fabrication of nanostructure of various shapes.
- Block copolymer self assembly, how to achieve long-range ordering.

Contents courtesy of Prof. Bo Cui

AFM lithography – scratching (simplest, mechanical lithography)

- Material is removed from the substrate leaving deep trenches with the characteristic shape of the tip used.
- The advantages of nano-scratching for lithography
 - Precision of alignment, see using AFM imaging, then pattern wherever wanted.
 - The absence of additional processing steps, such as etching the substrate.
- But it is not a clean process (debris on wafer), and the AFM tip cannot last long.

Scanning probe lithography (SPL)

- Mechanical patterning: scratching, nano-indentation
- Chemical and molecular patterning (dip-pen nanolithography, DPN)
- Voltage bias application
 - Field enhanced oxidation (of silicon or metals)
 - Electron exposure of resist materials
- Manipulation of atoms/molecules by STM, or nanostructures by AFM

AFM: atomic force microscopy (X-Y positioning by piezo; Z deflection by optical measurement)

Dip-pen nanolithography (DPN)

- Similar to micro-contact printing, and writing using a fountain pen.
- AFM tip is "inked" with material to be deposited
- Material is adsorbed on target
- <15nm features</p>
- Multiple DPN tip arrays for higher throughput production

ECE 695 Nanometer Scale Patterning and Processing

AFM lithography: oxidation (local electrochemical anodization)

- Resulting oxide affected by experimental parameters
 - Voltage (typically from 5-10V)
 - \circ Tip scan speed (stationary to tens of μ m/s)
 - Humidity (20% to 80%)
- Detected current can be used for process control
- Changes in translational velocity influence current flow

STM lithography (STM: scanning tunneling microscopy)

By applying a voltage between tip and substrate it is possible to deposit or remove atoms or molecules.

Van der Waals force used to drag atoms/molecules.

Advantages of STM Lithography

- •Information storage devices (one atom per bit, highest storage density).
- •Nanometer patterning technique (highest resolution, ~Å).
- •Manipulations of big molecules and individual atoms.

Iron on copper (111)

Scanning probe lithography (STM)

STM manipulation of atoms/molecules

M.F. Crommie, C.P. Lutz, D.M. Eigler. Science 262, 218-220 (1993)

PURDUE

Lithography by molding/material transferring II: nanoimprint lithography (thermal/hot embossing)

ECE 695 Nanometer Scale Patterning and Processing

UV-curable nanoimprint lithography (Au patterning by liftoff as an example)

expansion mismatch no longer an issue.

Many UV-curable resists are sensitive to

Lithography by molding/material transferring (II): soft lithography (pattern duplication)

- A master mold is made by lithographic techniques and a stamp is cast from this master.
- Poly di-methyl siloxane (PDMS) is most popular material for stamps.
- Image reversal: fill PDMS stamp with PDMS pre-polymer, then peeled from PDMS stamp.

Stamp (mold) production

PDMS properties:

- Soft and flexible.
- Can be cured to create a robust PDMS stamp.
- Chemically inert, non-hygroscopic, good thermal stability.
- Can be bonded to a glass slide to create microfluidic components.

(hygroscopic: readily taking up and retaining moisture)

Photolithography pattern SU-8 Cast PDMS pre-polymer and cure Nanometer Scale Patterning and Processing

peel off from SU-8 master

Soft-lithography I: micro-contact printing (μCP)

- Minimum resolution affected by diffusion of molecules, can reach sub-50nm.
- PDMS is deformable can accommodate rough surfaces or spherical substrates.
- Self assembled mono-layers (SAM) are efficient barriers against chemical etches.
- ullet For example, SAM monolayer can be used as etching mask to pattern Au using wet-etch. ECE 695 Nanometer Scale Patterning and Processing ullet Nanometer Scale Patterning and Processing