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Outline

• Motivation and goal

• Examples for demonstration

• Goal for Year 5
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Dimensional Scaling Makes Parasitics Worse

Short-Channel Effect

Rcon ~ 1/Lc

Scatterting ↑ as tch ↓

Ccoupling ~ 1/Lext Rwire ↑  as Wwire ↓ 

[Sources: E. Pop (Stanford); A. Pyzyna, VLSI-T ‘15; C.-W. Sohn, TED ‘13; J. Zou, TED ‘11]
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Constrained Multivariable 

Optimization!
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Opportunity and Challenge

• New materials/technologies to continue scaling

• Which one is the best when integrated into a SYSTEM? 

2D-Material FETs

(MoS2, WS2, MoSe2, BP, …)

Graphene/CNT

Interconnect

Nanowire FET

Ge/III-V Channel
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Full System Design for Technology Assessment

• Implement a full system for early assessment of emerging 
technologies in presence of parasitic and interconnect RC.

VLSI Design

Design-Technology Co-Optimization

Parasitic 

Extraction

Timing/Power

Characterization

System 

Implementation

Synthesis

Place

Clock Tree

Route

Signoff

Interconnect

Technology

Standard Cells

Power

Performance

Area
Transistor 

Model



6

5-nm Si FinFET as Example

• Model based on experimental data + TCAD simulations

MVS Model Fitting

Intel 14-nm FinFET
Synopsys 5-nm

Projection

[S. Natarajan (Intel), IEDM ‘14; L. Smith (Synopsys), SISPAD ‘15]

5-nm FET Design

Fin width 5 nm

Fin height 30 nm

Fin pitch 21 nm

Gate length 16 nm

EOT 0.7 nm

Vdd 0.6 V
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Compact Models Are the Key

• Bridge between devices and systems

• Example: MVS model + experiment/simulation data

Si FinFET MoS2-FET (Simulation)Si NWFET

[S. Natarajan (Intel), IEDM ‘14] [M. Choi (Synopsys), SISPAD ’15] [L. Liu, J. Guo, TED ‘13]
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Parasitic Extraction and Interconnect

Standard Cell Layouts Interconnect Definition

(Thickness, dielectric, resistivity)

Extracted Netlist

Area-Dependent Cu Resistivity
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RC Breakdown of INV_X1 Cell

• Parasitic RC dominates over device intrinsic RC, 
especially the capacitance

R
e

s
is

ta
n

c
e

 (
k
Ω

)

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

Cgint Cpar

C
a
p
a
c
it
a
n
c
e

 (
fF

)

67%

78%

71%

82%



10

VLSI System Implementation Flow

• Details in the poster session…

PDK Development Flow System Implementation Flow

Standard Cells

Extracted Netlist

Layout Sizing

Parasitic 

Extraction

Timing/Power 

Characterization

Timing/Power Lib

Transistor

Interconnect

RTLTechLEF Timing Constraint

Synthesis

Placement

DFT

Gate-Level 

Netlist

Clock Tree 

Synthesis

Route

RC Extraction

Fix Timing 

Violation

Static Timing 

Analysis

Power, Performance, Area
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ARM Processor on 5-nm Tech as Example

• Place-and-route is a stochastic process
– Gate placement and routing are optimized stochastically

• Depends on choice of Power, Performance, Area
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Why Need A Full System?

• Because it is hard to predict the wires
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Complex Gate-Wire Balancing 

• Many knobs to balance wires and gates:

– wire length, fanout, logic depth, gate size, metal layers
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Correlation Between Inverter Chain and Full-Core Data

• Inverter chain as performance benchmark circuit
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Technology Optimization Using Analytical Model

• Full-core implementation is time-consuming 

– Hours ~ days to build PDK and perform synthesis, place and route

• With the analytical model calibrated to full-core data, optimization can be 
done more efficiently

• Example: Optimize the extension length (Lext) of FET

Rcon ~ 1/Lc

Ccoupling ~ 1/Lext
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Deliverable in Year 5

• Package including scripts for nanotech researchers to 

design digital systems for emerging FETs and interconnect

– Standard tools exist

– Complete physical design too complex to learn quickly

• https://nanohub.org/groups/nanosystems by G. Hills (Stanford)

• 2.0 will focus on parasitic extraction and interconnect.

https://nanohub.org/groups/nanosystems

