Connecting Devices to Systems
32-Bit Micro-processor at 5-nm Technology Node

Chi-Shuen (Vince) Lee and H.-S. Philip Wong
Stanford University
Outline

• Motivation and goal

• Examples for demonstration

• Goal for Year 5
Dimensional Scaling Makes Parasitics Worse

Short-Channel Effect

\[\lambda = t_{ch} + 2 (\varepsilon_{ch} / \varepsilon_{ox}) t_{ox} \]

\[
\text{SS (mV/dec)} = 300, 250, 200, 150, 100, 50
\]

\[\mu (\text{cm}^2 \text{V}^{-1} \text{s}^{-1}) \]

Scattering ↑ as \(t_{ch} \) ↓

Constrained Multivariable Optimization!

\[R_{con} \sim 1/L_c \]

\[C_{coupling} \sim 1/L_{ext} \]

\[R_{wire} \uparrow \text{ as } W_{wire} \downarrow \]

Sources: E. Pop (Stanford); A. Pyzyna, VLSI-T ’15; C.-W. Sohn, TED ’13; J. Zou, TED ’11
Opportunity and Challenge

• New materials/technologies to continue scaling
• Which one is the best when integrated into a SYSTEM?

2D-Material FETs
(MoS2, WS2, MoSe2, BP, …)

Graphene/CNT
Interconnect

Ge/III-V Channel

Nanowire FET
Full System Design for Technology Assessment

- Implement a full system for early assessment of emerging technologies in presence of parasitic and interconnect RC.
5-nm Si FinFET as Example

- Model based on experimental data + TCAD simulations

MVS Model Fitting
Intel 14-nm FinFET

- 5-mm FET Design:
 - Fin width: 5 nm
 - Fin height: 30 nm
 - Fin pitch: 21 nm
 - Gate length: 16 nm
 - EOT: 0.7 nm
 - Vdd: 0.6 V

Synopsys 5-nm Projection

[S. Natarajan (Intel), IEDM ‘14; L. Smith (Synopsys), SISPAD ‘15]
Compact Models Are the Key

- Bridge between devices and systems
- Example: MVS model + experiment/simulation data

Si FinFET

Si NWFET

MoS$_2$-FET (Simulation)

[S. Natarajan (Intel), IEDM ‘14]
[M. Choi (Synopsys), SISPAD ‘15]
[L. Liu, J. Guo, TED ‘13]
Parasitic Extraction and Interconnect

Standard Cell Layouts

Interconnect Definition
(Thickness, dielectric, resistivity)

Extracted Netlist

Area-Dependent Cu Resistivity

[Synopsys StarRC]

[A. Pyzyna, VLSI-T ’15]
RC Breakdown of INV_X1 Cell

- Parasitic RC dominates over device intrinsic RC, especially the capacitance
VLSI System Implementation Flow

• Details in the poster session...
ARM Processor on 5-nm Tech as Example

- Place-and-route is a stochastic process
 - Gate placement and routing are optimized stochastically
- Depends on choice of Power, Performance, Area

Each dot on the plot represents a target clock frequency.
Why Need A Full System?

- Because it is hard to predict the wires

[Graphs showing wire capacitance and resistance with baseline and 0.25x R_wire comparisons.]

90% wires < 5 um

Avg. Wire Len. (um) # of Long Wire (>1,500 CPP)

<table>
<thead>
<tr>
<th></th>
<th>baseline</th>
<th>0.25x R_wire</th>
<th></th>
<th>baseline</th>
<th>0.25x R_wire</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.49</td>
<td>5.56</td>
<td>386</td>
<td>921</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Complex Gate-Wire Balancing

- Many knobs to balance wires and gates:
 - wire length, fanout, logic depth, gate size, metal layers
Correlation Between Inverter Chain and Full-Core Data

• Inverter chain as performance benchmark circuit

- Hard to estimate wires across technologies with simple circuits

![Diagram showing inverter chain and full-core data comparison](image-url)
Technology Optimization Using Analytical Model

• Full-core implementation is time-consuming
 – Hours ~ days to build PDK and perform synthesis, place and route

• With the analytical model calibrated to full-core data, optimization can be done more efficiently

• Example: Optimize the extension length (L_{ext}) of FET

\[
\begin{align*}
R_{\text{con}} & \sim \frac{1}{L_c} \\
C_{\text{coupling}} & \sim \frac{1}{L_{\text{ext}}}
\end{align*}
\]
Deliverable in Year 5

- Package including scripts for nanotech researchers to design digital systems for emerging FETs and interconnect
 - Standard tools exist
 - Complete physical design too complex to learn quickly

- https://nanohub.org/groups/nanosystems by G. Hills (Stanford)

- 2.0 will focus on parasitic extraction and interconnect.