NEEDS Annual Review / Meeting: May 18, 2016

Connecting Devices to Systems 32-Bit Micro-processor at 5-nm Technology Node

Chi-Shuen (Vince) Lee and H.-S. Philip Wong Stanford University

Outline

• Motivation and goal

• Examples for demonstration

• Goal for Year 5

Dimensional Scaling Makes Parasitics Worse

Cu area (nm²)

[Sources: E. Pop (Stanford); A. Pyzyna, VLSI-T '15; C.-W. Sohn, TED '13; J. Zou, TED '11]

Opportunity and Challenge

- New materials/technologies to continue scaling
- Which one is the best when integrated into a SYSTEM?

Full System Design for Technology Assessment

• Implement a full system for early assessment of emerging technologies in presence of parasitic and interconnect RC.

5-nm Si FinFET as Example

Model based on experimental data + TCAD simulations

Compact Models Are the Key

- Bridge between devices and systems
- Example: MVS model + experiment/simulation data

Parasitic Extraction and Interconnect

RC Breakdown of INV_X1 Cell

• Parasitic RC dominates over device intrinsic RC, especially the capacitance

VLSI System Implementation Flow

Details in the poster session...

ARM Processor on 5-nm Tech as Example

- Place-and-route is a stochastic process
 - Gate placement and routing are optimized stochastically
- Depends on choice of Power, Performance, Area

Each dot on the plot represents a target clock frequency.

Why Need A Full System?

• Because it is hard to predict the wires

Complex Gate-Wire Balancing

- Many knobs to balance wires and gates:
 - wire length, fanout, logic depth, gate size, metal layers

Correlation Between Inverter Chain and Full-Core Data

• Inverter chain as performance benchmark circuit

Hard to estimate wires across technologies with simple circuits

Technology Optimization Using Analytical Model

- Full-core implementation is time-consuming
 - Hours ~ days to build PDK and perform synthesis, place and route
- With the analytical model calibrated to full-core data, optimization can be done more efficiently
- Example: Optimize the extension length (Lext) of FET

Deliverable in Year 5

- Package including scripts for nanotech researchers to design digital systems for emerging FETs and interconnect
 - Standard tools exist
 - Complete physical design too complex to learn quickly
- <u>https://nanohub.org/groups/nanosystems</u> by G. Hills (Stanford)

• 2.0 will focus on **parasitic** extraction and **interconnect**.