Probabilistic Computing with Nanomagnets

Kerem Y. Camsari
Post-Doctoral Researcher

Supriyo Datta Group

Collaborators: Samiran Ganguly, Shehrin Sayed, Behtash Behin-Aein, Brian M. Sutton, Zhihong Chen
We established a modular, “spin-circuit” framework connecting experiments to devices and circuits.

Kerem Camsari
https://nanohub.org/groups/spintronics
Modular Approach to Spintronics

We established a modular, “spin-circuit” framework connecting experiments to devices and circuits.

Kerem Camsari https://nanohub.org/groups/spintronics
We established a modular, “spin-circuit” framework connecting experiments to devices and circuits.
We established a modular, “spin-circuit” framework connecting experiments to devices and circuits.
We established a modular, “spin-circuit” framework connecting experiments to devices and circuits.
We established a modular, “spin-circuit” framework connecting experiments to devices and circuits.

Kerem Camsari

https://nanohub.org/groups/spintronics
We established a modular, “spin-circuit” framework connecting experiments to devices and circuits.

Kerem Camsari

https://nanohub.org/groups/spintronics
Connecting *Experiments to Spin-Circuits*

Gao et al., IEDM (2012) (Chen / Appenzeller)

Kerem Camsari https://nanohub.org/groups/spintronics
Connecting *Experiments to Spin-Circuits*

Gao et al., IEDM (2012) (Chen / Appenzeller)

Recently emerging: Spin Hall / Valley Hall in 2D Systems

https://nanohub.org/groups/spintronics
Recently emerging: Spin Hall / Valley Hall in 2D Systems

\[R_{NL} = \frac{\theta^2 \rho W \left(\exp \left(\frac{-L_3}{\lambda} \right) \right)}{2\lambda} \]

Balakrishnan, J et al., Nature Physics (2013)

Gao et al., IEDM (2012) (Chen / Appenzeller)
Connecting Experiments to Spin-Circuits

Recently emerging: Spin Hall / Valley Hall in 2D Systems

Approach allows direct comparison with experiments and with other theoretical methods.

Kerem Camsari
https://nanohub.org/groups/spintronics
Leveraging Emerging Physics: Pure Spin Conduction

Multi-physics integration of emerging physics with existing “building blocks” leads to new devices
Leveraging Emerging Physics: Pure Spin Conduction

PSC Module = Pure Spin Conductor, e.g YIG

Sayed et al., in review (2016)

Multi-physics integration of emerging physics with existing “building blocks” leads to new devices

Kerem Camsari

https://nanohub.org/groups/spintronics
Leveraging Emerging Physics: Pure Spin Conduction

PSC Module = Pure Spin Conductor, e.g. YIG

Sayed et al., in review (2016)

Multi-physics integration of emerging physics with existing “building blocks” leads to new devices

Kerem Camsari
https://nanohub.org/groups/spintronics
Evaluating Spintronic Alternatives to CMOS
Evaluating Spintronic Alternatives to CMOS

\[E \times \tau = Q^2 R \]

PMA
\[\Delta = 60 \, kT \]
\[H_K^{\text{eff}} = 0.5 \, T \]
\[M_S V/\mu_B = 1 \times 10^5 \]

CMOS
\[Q \approx 750 \text{ electrons} \]
\[W_{\text{eff}} = 56 \, \text{nm} \]

FinFET

Kerem Camsari
https://nanohub.org/groups/spintronics
Evaluating Spintronic Alternatives to CMOS

No clear alternative to CMOS exists yet, dynamic landscape involving spins & magnets calls for a modular approach

Kerem Camsari
https://nanohub.org/groups/spintronics
Beyond CMOS: Probabilistic **Magnets**

Magnets: Many Flavors

- **Hysteresis:**
 - Non-volatile
 - DETERMINISTIC
 - Boolean

- **Stochastic**
 - PROBABILISTIC

- **Quantum**

Deterministic, Spin-Switch

\[U = 60 \, \text{kT} \]

- Number of spins:
 - \(N_s \approx 1e5 \)
 - \(K_u V = 60 \text{kT} \)

- \(N_s \approx 1e4 \)
 - \(K_u V = 6 \, \text{kT} \)

- \(N_s \approx 1 \)
 - \(K_u V \approx 0 \, \text{kT} \)

Kerem Camsari
https://nanohub.org/groups/spintronics

PURDUE UNIVERSITY
Beyond CMOS: Probabilistic Magnets

Magnets: Many Flavors

- **Hysteresis:**
 - Non-volatile
 - **DETERMINISTIC**
 - **Boolean**
- **Stochastic**
 - **PROBABILISTIC**
- **QUANTUM**

Number of spins

- $N_s \approx 1e5$
- $K_u V = 60kT$

- $N_s \approx 1e4$
- $K_u V = 6 \text{ kT}$

- $N_s \approx 1$
- $K_u V \approx 0 \text{ kT}$

$U = 60 \text{ kT}$

Magnets as natural hardware ranging from Classical to Quantum: The intermediate regime is probabilistic

Kerem Camsari
https://nanohub.org/groups/spintronics
“Ising Computers” Using Magnets

4x4 Ising Lattice

Behin-Aein et al. (2016) Pre-print

WRITE

READ

$U = 6 \ kT$

Kerem Camsari

https://nanohub.org/groups/spintronics
Ising Lattices can be mimicked using interacting Spin-Switches, involving probabilistic magnets.

\[U = 6 \, kT \]

Temperature: \(T_c \)

Heat Capacity:

References:

Behin-Aein et al. (2016) Pre-print

Resources:

https://nanohub.org/groups/spintronics
Traveling Salesman Problem using Magnets
Solving (TSP) using a 5x5 Ising Computer, offers unique advantages due to probabilistic magnets

Sutton et al. (2016) Pre-print

https://nanohub.org/groups/spintronics
“Atoms to Systems” using Modular Approach

Modular Approach to Spintronics

Kerem Camsari
https://nanohub.org/groups/spintronics
“Atoms to Systems” using Modular Approach

New Physics/Experiments

Modular Approach to Spintronics

Kerem Camsari

https://nanohub.org/groups/spintronics
“Atoms to Systems” using Modular Approach

New Physics/Experiments

Theory: Quantum to Semi-Classical Transport, LLG

Modular Approach to Spintronics

Kerem Camsari
https://nanohub.org/groups/spintronics
"Atoms to Systems" using Modular Approach

New Physics/Experiments

Theory: Quantum to Semi-Classical Transport, LLG

CMOS Alternatives

Kerem Camsari

https://nanohub.org/groups/spintronics
“Atoms to Systems” using Modular Approach

New Physics/Experiments

Theory: Quantum to Semi-Classical Transport, LLG

Modular Approach to Spintronics

Oscillators / Sensors / MEMS

CMOS Alternatives

Kerem Camsari

https://nanohub.org/groups/spintronics
“Atoms to Systems” using Modular Approach

New Physics/Experiments

Theory: Quantum to Semi-Classical Transport, LLG

Oscillators / Sensors / MEMS

CMOS Alternatives

Grand Challenge: Creating “Brain-like” Systems

Kerem Camsari

https://nanohub.org/groups/spintronics