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Objectives

Vineis, C. J., Shakouri, A., Majumdar, A. and Kanatzidis, M. G. (2010), Nanostructured Thermoelectrics: Big 
Efficiency Gains from Small Features. Adv. Mater., 22: 3970–3980. doi:10.1002/adma.201000839

• New thermoelectric materials and structures are being developed toward higher ZT.

• Device level performance, however, can be significantly lower than that predicted from 

intrinsic material.

• A TE design simulation must capture correctly all the physics in a full 3D device
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Background / Motivation
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Sentaurus™: 1D/2D/3D PDE-based 

simulator for electrothermal transport.

1) PDE-based simulation

Contact design, device design, and SPICE 

model benchmarking.

2) Spice modeling

Physics-based, SPICE-compatible 

compact circuit model for TE device.

Device characterization and circuit 

simulation applications. 3

TE compact model

Thermoelectric device compact model

(Available at https://nanohub.org/publications/80)
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Conrad, K. (2015). A physics-based compact model for thermoelectric 

devices. Purdue University. M.S. Thesis
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3D PDE device simulation

P-type SL (250 μm x 250 μm x 5 μm)

N-type SL (250 μm x 250 μm x 5 μm)
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• In this work, we use Sentaurus™ to solve the 3D TE device and benchmark with SPICE 

model.

• All parameters are taken from experiment and have temperature dependence.
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3D effects on current flow

11 2 8 4/ 7 10 /1.56 10 6.7 10T C sL R m mm       

4exp( 180 / 6.7 10 ) 0.997m m   

The transfer length of  the metal/SL interface is

With diameter of  180 um, maximum variation factor across the surface is

Therefore, the 3D flow of  current due to current crowding is insignificant.
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DC performance
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Rth Thermal interface resistance 0.006 Km2/W

Rs Electrical interface resistance 5x10-7 Ohm-cm2

TIM Thermal insulating material 0.023 W/K-m
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With thermal interface R
I = 10 A

With thermal interface resistance 0.006 Km2/W

p-type SL T=300K
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With electrical interface R
I = 10 A

With electrical interface resistance = 5x10-7 Ohm-cm2

p-type SL T=300K
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With both thermal and electrical 

interface R
I = 10 A

With both electrical and thermal interface resistances

p-type SL T=300K
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AC and transient analysis

Zreal =real(V/I); Zimag =imag(V/I); 

At high frequency, thermal circuit is shorted by thermal 

capacitors. 
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SPICE simulation

Sentaurus simulation

AC analysis: impedance Transient analysis: pulsed cooling
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Coupling to application environment
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Status and Plans

• Capability for full, numerical simulation of  realistic 3D TE 

devices is ready.

• Physics-based SPICE model produces essentially identical 

results.

• Sentaurus informed by first principles + SPICE informed by 

Sentaurus provide the tools needed.

Summary:

• Benchmark with experimental device performance

• Coupling to characterization techniques

Plan:
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