Nanometer Scale Patterning and Processing Spring 2016

Lecture 4 Contamination Control and Substrate Cleaning

Contaminants

- A substance causes uncontrolled variations in the (electrical) performance of the device or in the device fabrication process
 - Contaminants are defects
 - Excessive cleaning may also create defects
 - E.g. excessive etching of the Si surface
- Maybe observed visually or may only be detected with sophisticated analytical equipment during the inspection or final device test
- Balance and tradeoff
 - No excessive cleaning
 - Remove unwanted contamination
 - Not contribute to undesired defects
- ECE 695 Nanometer Scale Patterning and Processing

Contaminations & Counter-measures

- Atomic and molecular
 - Adsorbed ions and elements
 - Adsorbed gases
- Microscopic
 - Thin films
 - Particle related
 - Discrete particles
 - Particulates (clusters of particles)
- Particles (number and size)
 - Filtering, brushing and megasonics
- Inorganic contaminants
 - Aqueous cleaning solutions
- Organic contaminants
 - Removed using strong oxidizers
- Impurities
 - Gettering
 - ECE 695 Nanometer Scale Patterning and Processing

Semiconductor Wafer Cleaning Technology for CMOS Processing

- Critical challenges for front end of line (FEOL)
 - Removal of small particles (< 45 nm)
 - Minimal damage to narrow (<1 nm) gate lines
 - Minimal Si/SiO₂ consumption (<4 micron)
 - Watermark-free drying for hydrophobic/hydrophilic combination surface
- Critical challenges for back end of line (BEOL)
 - Damage-free cleaning to the low-k material
 - Removal of small particles (< 45 nm)
 - Watermark-free drying for hydrophobic/hydrophilic combination surface

Cleaning post-gate features

Critical Components for cleaning of BEOL Structures

Critical Impurity Elements for Si Devices

- Heavy metals (most critical) Cu, Fe, Ni, Cr, Co, Mo
- Alkali metals (critical) Na, K, Li, Ca
- Other elements (least critical) AI, Mg, C, S, CI, F

Sources of Contamination

- Humans
 - Emits 10⁵ particles (>0.3 μ m) per minute
- Chemicals and process gases
- Process equipment
 - Evaporators, Etchers, CVD tools
- Plumbing
- Handling

Air filtering

- Cleanrooms has laminar flow from roof to floor.
- Cleanroom classification: the number of particles per cubic foot that are greater than 0.5 μm in diameter
 - Class 1,000-10,000: clean general purpose lab
 - Class 10-100: very clean lab space, general cleanroom
 - Class 1-10: Commercial Fabs
 - Class 0.1-1: Most advanced IC process lines

Various Standards in Cleanroom Classification

http://en.wikipedia.org/wiki/Cleanroom

US FED STD 209E cleanroom standards

particle/ft³

Class	0.1 <u>µm</u>	0.2 µm	0.3 µm	0.5 µm	5 µm
1	35	7	3	1	
10	350	75	30	10	
100		750	300	100	
1,000				1,000	7
10,000				10,000	70
100,000				100,000	700

ISO 14644-1 cleanroom standards

			particle/	m ²		
Class	0.1 µm	0.2 µm	0.3 µm	0.5 µm	1 µm	5 µm
ISO 1	10	2				
ISO 2	100	24	10	4		
ISO 3	1,000	237	102	35	8	
ISO 4	10,000	2,370	1,020	352	83	
ISO 5	100,000	23,700	10,200	3,520	832	29
ISO 6	1,000,000	237,000	102,000	35,200	8,320	293
ISO 7				352,000	83,200	2,930
ISO 8				3,520,000	832,000	29,300
ISO 9				35,200,000	8,320,000	293,000

Cleanroom class comparison

SO 14644-1	FED STD 209E
ISO 3	1
ISO 4	10
ISO 5	100
ISO 6	1,000
ISO 7	10,000
ISO 8	100,000

Detection of Contaminations

- For Particles: Light scattering
 - Gas phase
 - Wafer surface
 - Automation
- For organics:
 - Wetting

Wetting angles

Classification of Contamination and Defects

- Classification according to detection method
 - Metallic contamination
 - Total reflection X-ray fluorescence (TXRF)
 - Atomic absorption spectrometry (AA)
 - Inductively coupled plasma-mass spectrometry (ICP-MS)
 - Particle contamination
 - Detected with light scattering tools
 - Organic contamination
 - Thermal desorption mass spectrometry
 - X-ray photoelectron spectroscopy
 - Auger electron spectroscopy
 - Surface defectivity (roughness of film surface or Line edge roughness)
 - Atomic force microscopy (AFM)
 - Atmospheric molecular contamination (AMC) and moisture
 - Ion mass spectrometry
 - Capillary electrophoresis

Wafer Cleaning and Surface Conditioning Technology

- Liquid processes
 - Dertergent plus Ultrasonic
 - Megasonic agitation
 - High pressure water jet (300-3000 psi)
- Gas-phase methods
 - High pressure argon or CO_2 jet.
- Wafer rinsing and drying techniques
- Excimer lasers

Liquid Processes and Wafer Drying Techniques

- Diluted HF solutions:
 - 1:50 or 1:100 of 49 wt% HF:DI H₂O
 - To remove 1.0-1.5nm thick native oxide
 - Changes the wafer surface from hydrophilic to hydrophobic
 - Hydrogen passivation of the Si surface
 - Can also desorb metallic particles
- Buffered oxide etch (BOE or BHF)
 - Mixture of 7:1 40 wt% NH_4F and 49 wt% HF
 - More stable rate and prevents loss of photoresit polymer in acidic environment
 - HF₂⁻ is the enthant

Removal of residual organics (including resists)

- Oxygen plasma etching (ashers)
- H₂O₂ and H₂O, especially at boiling temperature
- Piranha cleaning;
- UV/ozone.
- Acetone \rightarrow Methanol \rightarrow IPA

H₂SO₄/H₂O₂ Mixtures (Piranha Etch)

- 98 wt% H_2SO_4 and 30 wt% H_2O_2
- Volume ratios of 2:1 4:1
- Temperature 100 130 C
- Time: 10 15 minutes
- Destroys organic contaminants by oxidation
- Contaminates Si surface with sulfur residues
- Goggles, face shields, and plastic gloves needed
- Diluted HF dipping of 15 seconds is recommended
- Alternatives:
 - Add $(NH_4)_2SO_4$ (known as SA-80)
 - Add $H_2S_2O_4$ (peroxydisulfuric acid, or Caros acid)
 - Add ozonated H_2O , i.e. DI H_2O/O_3

RCA Standard Cleaning (RCA Cleaning)

- Developed at radio corporation of america
 - Standard Clean 1 (SC-1)
 - 27 wt% NH₄OH: 30 wt% H₂O₂: DI H₂O
 - Volume ratio 1:1:5 (range from 1:1:5 to 1:2:7)
 - Standard Clean 2 (SC-2)
 - 37 wt% HCI: 30 wt% H₂O₂: DI H₂O
 - Volume ratio 1:1:6 (range from 1:1:6 to 1:2:8)
 - Temp: 75-85 C for 10-20 minutes
 - Quench and overflow rinse in running DI water, followed by spun dry
 - Immediately transferred to boxes with pre-filtered $\rm N_2$ for storage if not immediately processed
 - Exact composition are not critical

SC-1

- Removes organic contaminants from Si, oxide and quartz
 - NH_4OH
 - Solvating action
 - Provide alkaline environment for H₂O₂
 - Complexing some periodic group IB and IIB metals
 - Cu, Au, Ag, Zn and Cd, as well as Ni, Co and Cr.
 - H_2O_2
 - Oxidizing action in alkaline environment is relatively powerful
 - SC-1 dissolves the thin native oxide of Si at a very low rate and forms a new oxide on the Si surface by oxidation at the same rate
 - Help remove particles and chemical impurities

Mechanism to Remove Particles in SC-1

- Micro-etching of Si surface by the NH₄OH
 Increase Si surface roughness
- Zeta potential of colloids dispersed in a high pH medium is negative, as is the wafer surface

- Prevents the re-deposition of the dislodged particle

- Magasonic energy decreases the boundary layer of fluid flow over the wafer surface
- Acoustic streaming and the formation of cavitation.

Zeta Potential and the Double Layer

• ζ Affected by pH and ionic strength of a solution

ζ Potential vs pH

- ζ typically positive in acidic pH due to H⁺ adsorption
- Higher pH → more adsorption of OH⁻ → ζ decreases (move to a more negative value)
- Isoelectric point (IEP): pH value where $\zeta = 0$

Particle Adhesion

- Van der Waals Force
 - Omni-present, regardless whether they have dipoles
- Electrostatic forces
 - Effect of pH and ionic strength on zeta potentials
- Capillary condensation
 - Contact angles
- Measurement
 - AFM
 - Zeta potential

The Capillary and van der Waals force vs particle size

Silica and alumina particles on a flat surface

SC-2

- Dissolve and remove alkali residues and any residual trace metals or metal hydroxides
 - Au, Ag
 - $AI(OH)_3$, FeOH, Mg(OH)₂, or Zn(OH)₂
- Dissolved metal ions form metal complexes
 - Prevents replating from solution
- Does not etch Si or SiO₂
 - No surfactant activity or capability to remove particle
- Temperature control is more forgiving

Improvements

- Introduce a 10 second 1:50 diluted HF dip
 - Between SC-1 and SC-2
 - Re-expose the Si surface for the SC-2 step
- Use fused silica vessels instead of Pyrex
 Eliminate leached glass components (e.g. sodium)
- Replacement of SC-2 with very dilute, room temperature HCI
 - All metals except Ag and Au are readily soluble in dilute HCI, no need for oxidative desorption
 - Au and Ag contaminants are no longer present in high-purity process chemicals

RCA Megasonic Cleaning System

- Megasonic treatment in SC-1 bath
 - Allows substantial reduction in solution temperature
- Megasonic in rinsing of wafers
 - Much more efficient than immersion tank processing

Megasonic Cleaning

- Ultrasonic energy with frequencies near 1 MHz
- Can be combined with other liquid cleaning solutions
 SC1 and SC2
- Small acoustic boundary layer.

Megasonic/Ultrasonic Transducers

Acoustic Streaming

Eckart-type acoustic streaming

Magasonic Cleaning (II)

- Particle removal efficiency (PRE)
 - Optimal megasonic power (400-500W)
 - Optimal cleaning temperature (28-35 C)
 - Optimal cleaning time (12-15 min)

- Redeposition

Dilemma between cleaning power and structure damage

- High particle removal efficiency (PRE)
- No substrate damage
- Low substrate film loss
 ECE 695 Nanometer Scale Patterning and Processing

Film loss comparison (A)				
Film	Batch tool	Single- wafer Emersion	<i>ITRS</i> target	
Si	2.5–10	<0.25	0.4	
SiO ₂	3–6	<0.1	0.4	

Dual-Transducer Megasonic Cleaning

Particle Removal

- Adopted by IC manufacturing
 - RCA cleaning
 - Brush scrubbing
 - Megasonic cleaning
- In development
 - Laser shock wave
 - Supercritical CO₂ cleaning

Cryogenic Cleaning

Cryogenic Aerosol Cleaning

- Dry, non-aqueous, surface conditioning and cleaning method
- Contaminant removal is primarily by physical momentum transfer

Does not etch or oxidize surface films

- CO_2 , N_2 , and Ar/N_2 cryoaerosols
- Particle removals in FEOL transistor gates or high aspect ratio patterns in the BEOL.
- Has been used in MEMS, read/write magnetic moemory heads, photomasks, compound semiconductor devices.
 ECE 695 Nanometer Scale Patterning and Processing

Equipment

The left-hand side image shows the inside of the process chamber of an ANTARES® CX cleaning system. The right-side hand image depicts the flow pattern and particle transport path during cleaning. Courtesy of FSI International.

Nozzle-based cleaning technology

Pressurized gas spray, pulsed liquid jet spray

Plasma source for rapid photoresist stripping

Courtesy of Axcelis Technologies

Brushless post oxide CMP cleaning

- HF:HCI (1:2:200) for 5 min @ 24 C;
- Rinse with Ozone
- SC1 (1:2:30) for 6 min @ 70 C with megasonics
- Rinse with megasonics
- HF:HCI (1:2:200) for 5 min @ 24 C;
- Ozonated rinse, dry

