Nanometer Scale Patterning and Processing Spring 2016

Lecture 18 Electron Beam Lithography

Electron Beam Lithography

Arbitrary Patterns

- Leica VB6 HR (will be converted to UHR-EWF)
- Currently being installed in the Birck Nanotechnology Center
- ECE 695 Nanometer Scale Patterning and Processing

Pixel Exposure Model

Minimum linewidth typically 5x of pixel size Pixel transfer rate or data rate, or deflection speed: the maximum rate (in Hz) at which distinct pixels can be addressed by the beam

Deflection Speed of typical E-beam systems

Data Rate	SEBL Type
10-100 kHz	Converted SEM
1 MHz	Raith 150 (converted Leo SEM)
2 MHz	JEOL model JBX 5DII
6 MHz	VS-26, at MIT (converted IBM systems)
10 MHz	EBPG (Leica)
100 MHz	Nanowriter (Lawrence Berkeley Lab, 1996)
100 MHz	VB-6 (Leica)
160 MHz	MEBES IV, Etec Systems

Writing Strategies

bit-by-bit addressing

Waveforms of deflection voltages (x or y)

Field Sizes

Address grid Period (nm)	digital field	actual field size (μm)
100	12 bit (4096)	410
10	12 bit (4096)	41
10	14 bit (16,384)	164
10	16 bit (65,536)	655
1	16 bit (65,536)	66

Finer address grid provides higher flexibility in patterning,

Large field size reduces field stitching error (discussed later) and enables higher throughput,

But DAC bits and accuracy are limited.

Dual DAC Strategy

Deflection speed is the speed of the subfield DAC

Field Stitching

Types of Scanning within a Field

Vector scanning methods of writing fundamental shapes

A typical e-beam column

Schottky Emitter Tip (Thermal field emission)

Tilt and Shift Alignment

Beam Blanker

Deflects the beam away from the axis onto an aperture surface

Zoom lens and current adjustment

Currents in zoom lens can be adjusted

Beam deflection system requirements

- A accuracy of 1 part in 10⁵ or better. Dynamic correction of the deflection distortion can be implemented.
- Aberrations, especially astigmatism, must be minimized, and for large fields, corrected dynamically.
- Focus changes with distance off axis. For large fields, focus changes and the associated field rotation must be corrected.
- Telecentricity: vertical landing of the beam is desirable, so that magnification does not change as the beam is deflected away from the axis.

D=25 cm for Leica VB6-UHR ECE 695 Nanometer Scale Patterning and Processing

Field Distortion Maps

(a) First order correction only. (b) Correction through third order. Vectors indicate beam displacement from desired position for each point in the field.

Pattern Placement Errors in E-Beam Lithography

Time Scale (seconds)	10 ⁻⁶	10 ⁻²	10 ¹	10 ⁴	
	Pixel to Pixel	Feature to Feature	Field to Field	Exposure to Exposure	Quasi- static
	DAC quantization	charging			deflection non-linearity
		vibration stray EM fields	sympathetic beam/stage motion	field calibration	electron-optics distortions
		interferometer quantization	thermal gradiants and variations	substrate mounting distortion	interferometer mirror errors
		deflection hysteresis			stage calibration

Many red zones in ITRS roadmap are caused by these placement errors.

Spatial-Phase-Locked E-beam Lithography

ECE 695 FNTAhenderersement atterning a fin pollaboration with Leica)

Phase-Locking Strategy

Phase detection can be accurate down to a few nanometers (2~4 nm) ECE 695 Nanometer Scale Patterning and Processing PUI

IVERSITY

Interaction between high-energy electrons and resist (PMMA)

Monte-Carlo calculation of Electron trajectory in PMMA

Point-Spread Function and Double-Gaussian Model

Proximity Effect Distorts the Patterns

Proximity Effect Reduces Contrast

Plots of energy deposited per unit volume by electrons in passing through a 400 nm thick PMMA film on a Si substrate, normalized by dividing by the charge per unit length put down by the electron beam. The incident electron energy is 10 keV, and the depth is 400 nm below the top of the PMMA (i.e., at the interface with the Si substrate). Note how the background comes up (i.e., the contrast goes down) as the spatial period is reduced.

ECE 695 Nanometer Scale Patterning and

