Nanometer Scale Patterning and Processing Spring 2016

Lecture 14

Extreme UV (EUV) Lithography – EUV Source (Hot and Dense Plasma)

Extreme UV (EUV) lithography

- 1. Overview, why EUV lithography?
- 2. EUV source (hot and dense plasma).
- 3. Optics (reflection mirrors).
- 4. Mask (absorber on mirrors).
- 5. Resist (sensitivity, LER, out-gassing).

2

UNIVERSITY

6. Contamination control.

Source Power vs Throughput

EUV Radiation Source from Plasma

Must match the wavelengths of 13.5 nm at which Mo/Si multi-layers have high reflectivity

The only viable source for 13.5nm photons is a hot and dense plasma

- temperature of up to 200,000°C, atoms ionized up to +20 state.
- Emit photons by (e ion) recombination and de-excitation of the ions.
- Plasma must be pulsed: pulse length in pico- to nanosecond range
- produced by powerful pulsed laser or electric arc (discharge) of up to 60,000A peak current.

Discharge Produced Plasma (DPP)

Courtesy of Neil Fornaciari and Glenn Kubiak, Sandia.

Laser (LPP) and discharge (DPP) produced plasma

DPP: change electrical energy directly into EUV light, so high power, high efficiency; but ablation of electrode and more debris.

LPP: higher collection efficiency (larger collection angle), high repetition rate (more pulses/sec), more manageable thermal loads and debris, more scalable to HVM (high volume manufacturing).

EUV lithography tools using both DPP and LPP have been built.

Challenges:

- Radiate from IR to x-ray: need filter.
- Large source size into 4π spherical angles: need collector optics.
- Debris and thermal issues: may damage the optics.

For EUV lithography, ideally:

• Power > 110W

- Maximum in-band emission with narrow bandwidth ($\leq \pm 2\%$).
- Forward directed, no collector

Low (μW) to mid-power (1W) has application in other fields: Interference lithography, spectroscopy, microscopy, other metrology, testing EUV resist.

Discharge produced plasma (DPP)

- Hot plasma is created by magnetic compression of low-temperature plasma.
- Plasma is compressed with the magnetic field generated by the current used to heat the plasma, with two common geometries (see figure below).
- Because plasma is compressed by magnetic field B of current I, which generates the plasma, plasma is "self-heating".
- Two forces are present: the magnetic field pressure $B^2\!/2\mu_o$ and the plasma pressure.
- When these two forces are equal, the plasma achieves an equilibrium.

Equilibrium:
$$\frac{\mu_o I^2}{4\pi} = (Z_{eff} + 1)N_i kT_e$$

I: total current (B ∞ I), supplied by a capacitor in a pulsed mode; T_e: electron temperature

 $N_i = \pi r^2 n_i$, n_i =ion density; Z_{eff} : mean charge of the ions.

Laser produced plasma (LPP): overview

- Focusing a laser beam on a target material.
- Initial ionization occurs through photo-ionization, and the electric field of the laser accelerates these electrons (inverse Bremsstrahlung, see next slides).
- Non-elastic collision further ionize the plasma, whereas elastic collision transfers the electron's kinetic energy into ionic kinetic energy.
- As plasma expands, thermal energy is converted into kinetic energy and charge density decreases. (Expansion velocity of Sn plasma at ~30eV is about 2×10⁶cm/s, so at the order of 100µm in front of target for 10 ns pulse.) This decreases both the further absorption of laser energy and energy conversion efficiency (CE).
- Therefore, the laser pulse length should not be very long: 10 ns is a good time scale.
- The corresponding optimum laser intensity for maximum CE is 1×10^{11} W/cm² for Nd:YAG laser (1.06 μ m), and 1×10^{10} W/cm² for CO₂ laser (10.6 μ m).
- Longer wavelength preferred: Modeling shows that CE depends on laser wavelength -- CE (10.6 μm laser):CE (1.06 μm laser):CE(0.26 μm laser)=1.9:1.0:0.55.
- This is because: CE depends on a balance between emissivity and opacity; at longer wavelength laser absorption occurs at lower plasma (electron) density that is more transparent for EUV to escape.

Laser produced plasma: <u>a clean, bright, narrow source</u>

Plasma temperature:

 $T_e \propto Z^{1/5} (\lambda^2 \phi)^{3/5}$. Longer wavelength is more efficient to heat up plasma, so higher CE. λ : laser wavelength; ϕ : laser flux (Watt/cm²); Z: target atomic number.

Energy levels:

Transitions and energy levels are calculated using Hartree-Fock methods. The UTA continuum spectra is due to $4p^{6}4d^{n} - 4p^{5}4d^{n+1} + 4d^{n-1}4f$ line transitions. Atomic processes (routes for radiation):

- Ionization and recombination between successive ion stages.
- UTA line radiation from bound-bound transitions (excitation and de-excitation).
- Continuous Bremsstrahlung occur as well (Bremsstrahlung: electron emits photon when it is accelerated by the positively charged ions).

From: Soft x-rays and extreme ultraviolet radiation, written by David Attwood

Same idea as synchrotron radiation where electrons are accelerated radially by magnetic field.

FIGURE 6.2. Bremsstrahlung occurs when a passing electron is accelerated by an ion, causing it to radiate. Because of the wide range of incident electron velocities and the range of distances of closest approach (*impact parameter b*) a broad continuum of radiation is generated in a plasma, with a spectrum closely related to the electron velocity distribution, or its characteristic temperature.

Energy conversion efficiency (CE) into 13.5nm radiation

Figure 3.5 Relative CE into 13.5-nm radiation as a function of the atomic number of the emitter. The highly efficient Sn (Z = 50) and the frequently used Xe (Z = 54) are marked. (Reprinted from Ref. 14.)

Sn is most efficient, followed by Li (?), then Xe.

Plasma radiation source for 13.5nm: Xe

- 13.5nm photons only generated by one ion state (Xe¹¹⁺).
- Maximum population of this state is 45%.
- Even this state emits 10 times more at 10.8nm than 13.5nm.
- That is, xenon is inefficient: to produce 100W at 13.5nm, kilowatts of other wavelengths would have to be removed.
- On the plus side, xenon is very clean and easy to work with (no debris).

Comparative Spectra: Xe and Sn

Plasma radiation source for 13.5nm: Sn

Peak wavelength emission decreased with increasing atomic number ($\lambda \propto 1/Z$).

Laser produced Sn plasma Target, Z=50 [Kr]5s²4d¹⁰5p² Sn Laser wavelength, λ 1.064µm Laser flux, ϕ Electron temperature, T_{e} 48.8eV Electron density, n_e cm⁻³ (300K is 26meV, 1eV is 1.15×10⁴K)

Ion distribution Sn X 0.046 Sn XI 0.243 Sn XII 0.306 Sn XIII 0.330 Sn XIV 0.068

1 x 10¹¹ W/cm² 9.88 x 10²⁰

UTA peak wavelength (nm) versus atomic number

UTA: unresolved transition array, consisting of tens of thousands of lines (unresolved, overlapping 4d–4f transitions).

Nanometer Scale Patterning and Processing ECE 695

Plasma compositions for 13.5nm: Tin

- Optimum emission when tin is a low-percentage impurity.
- Light comes from transitions between 4p⁶4dⁿ and 4p⁵4dⁿ⁺¹ or 4dⁿ⁻¹(4f,5p).
- All ion states from Sn⁸⁺ to Sn¹³⁺ can contribute.
- Lighting up these transitions, and *only* these transitions requires exquisite control of laser plasma.
- But tin (debris) tends to condense on optics.
- In summary, tin is great as a 13.5nm source, if one can control the debris (yes).

Low density (diluted) targets leads to narrow UTA

100 mg/cc RF foam

•

0.1-1% solid density Sn

e.g., $0.5\%Sn = Sn_{1.8}O_{17.2}C_{27}H_{54}$

laser intensity (W/cm²) CE: (energy) conversion efficiency

- Low density tin also reduces debris contamination to optics.
- The optical depth at 13.5 nm is only ~7 nm of full density Sn. Beyond that, light is reabsorbed.
- CE (conversion efficiency) slightly reduced with low density Sn.
 Processing

Liquid Metal Droplet Generator Developed

100 μ m Sn droplets at 36 kHz, captured using strobe lighting

- Continuous stimulated droplet generation of liquid metals (Li and Sn) at temperatures up to 250°C
- Droplets diameter \leq 100 μ m
- Droplet rates up to 48 kHz
- Working distance of 50mm

The tin-doped droplet laser plasma EUV source

Multi-component 30 -35 um diameter target at 30 kHz -- Location precision 3 um

Modest laser intensities I ~ 10¹¹ W/cm²

Mass-limited targets

Target contains only 10¹³ tin atoms

Recently demonstrated 30 kHz laser droplet irradiation with intelligent feedback beam and target control – continuous operation for 8 hours

High CE demonstrated with Droplet Target

UNIVERS

Debris Mitigation Stops Erosion from Ions

Gas discharge produced plasmas source scaling

LPP EUV Source System Cross-Section

http://vestige.lmsal.com/TRACE

ECE 695 Nanometer Scale Patterning and Processing

Source: Cymer ASML company

EUV Power Scaling

- CO₂ laser power: 47 kW
- Conversion efficiency: 3.3%

Development of a Laser Produce Plasma EUV Source has Significant Challenges

Philips EUV source

- CE 2%
- 5 kHz
- 120W continuous operation, 260 W short term

Basic light generation principle: Sn *Discharge* Produced Plasma using rotating electrodes

- Laser Triggered Vacuum Spark
- Electrical contact through tin
 - Simple power supply to load capacitor bank
- Regenerating liquid tin surface
 - Electrode erosion problem fundamentally solved !
- Liquid metal cooling with tin
 - Very efficient to remove excess heat: >>100kW input power

