Nanometer Scale Patterning and Processing Spring 2016

Lecture 16 Electron Optics and Lithography

Resolution and Throughput for Lithography

Electron-optics

Electron Source

The Schottky Emission Gun

Schottky Emitter Tip

Source Brightness

Brightness is conserved

Current Electron Sources

Source	Lifetime (hrs)	B @ 25 KV (amp/cm ² Sr)	ΔE (eV)	Applications
W	100	2×10^5 @ 2900 K	2-3	Low cost SEM
LaB ₆	1000	5×10^{6} @2000 K	2-3	SEM, shaped-beam lithography system
W, FE tip, "cold"	>1000	$5 \times 10^8 - 10^9$	0.5	High resolution SEM
Zr/O/W thermal FE	>1000	2×10^8 @ 1800K	0.5	SEM and Gaussian-beam lithography

Electrons in Electrostatic Fields

•<u>Electrons are accelerated</u> towards any positive voltage.

- •The acceleration force:
 - Is proportional to the electric field strength (volts/distance).
 - Is in the same direction as the field.
- •The velocity and energy of the electron are increased.
- •There is no rotation effect.

Electrostatic Lenses for charged particles

Electron paths through the Electrostatic Lens

Magnetic Lenses for charged particles

Axially symmetric field distribution
No contamination build up: can be outside vacuum.
Weak focusing, proportional to *q/m*, can not focus heavy ions in FIB

•An electron moving through a magnetic field receives an accelerating force which is:

- perpendicular to the direction of the field
- perpendicular to the direction of the electron
- proportional to the flux density in the field
- proportional to the speed of the electron

•The velocity of the electron is not altered.

•This means:

•Electrons travelling parallel to the field are not affected.

•In general, electrons travel through the field in some

form of corkscrew path.

How do Magnetic Lenses work?

The axial and radial magnetic fields vary along the lens axis; roughly sketched as the following:

