Many Body Effects on Optical Properties of Graphene

Subhasis Ghosh

School of Physical Sciences Jawaharlal Nehru University, New Delhi 110067

Students Pawan, Premlata, Jitender

Research Activities

Plan of this talk

- Introduction to graphene bandstructure and "chirality".
- Growth and characterization of graphene.
- Robustness of universality under interlayer coupling and many body interactions.
- **Doping of graphene** to modulate the e-e interaction on universality
- How to break this universality ?

What is graphene?

In 2004, graphene was discovered by Andre Geim and Kostya Novoselov (Univ. of Manchester).

Science 306, 666 (2004)

2010 Nobel Prize in Physics

Q1. How thick is it? million times thinner than paper (The interlayer spacing : 0.33~0.36 nm)

Q2. How strong is it? stronger than diamond (Maximum Young's modulus : ~1.3 TPa)

Q3. How conductive is it? better than copper (The resistivity : $10^{-6} \Omega \cdot cm$) (Mobility: 200,000 cm² V⁻¹ s⁻¹)

Novel Phenomena in Graphene

- O Quantun Hall effect
- o Fractional QHE
- Berry's phase
- Klein tunneling
- o Kondo Effect
- o <u>Majorana Fermion</u>

Potential Applications of Graphene

- Membranes for ultra filtration
- **o** Composites and coating
- o Energy storage
- o Biomedical
- <u>Sensors</u>
- Fast Electronic devices

2 different ways of orienting bonds means there are 2 different types of atomic sites

Sublattice ≡ Pseudospin

$$\equiv ig| B ig
angle$$
 or spin down (1)

Bandstructure of Monolayer Graphene

Define Unit Cell

Tight Binding Model

Energy Dispersion Relation (E vs k plot)

Unit Cell

Two atoms per unit cell

Triangular/rhombic/hexagonal unit cell – hexagonal Brillouin zone

Tight binding model of monolayer graphene

Low Energy Properties

Expansion around K-points:

JNI

$$f(\vec{k}) = \sum_{\vec{s}_{j}=1}^{3} e^{i\vec{k}\cdot\vec{s}_{j}} = e^{ik_{y}a/\sqrt{3}} + 2e^{-ik_{y}a/2\sqrt{3}}\cos\left(\frac{k_{x}a}{2}\right) = -\frac{\sqrt{3}a}{2\hbar}\left(p_{x}-ip_{y}\right) + O\left(pa/\hbar\right)^{2}$$

$$H = \begin{pmatrix} 0 & -\gamma_{0}f(\vec{k}) \\ -\gamma_{0}f^{*}(\vec{k}) & 0 \end{pmatrix} \approx v \begin{pmatrix} 0 & p_{x}-ip_{y} \\ p_{x}+ip_{y} & 0 \end{pmatrix} \qquad S = \begin{pmatrix} 1 & sf(\vec{k}) \\ sf^{*}(\vec{k}) & 1 \end{pmatrix} \approx \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + O\left(\frac{spa}{\hbar}\right)$$

$$H = v \begin{pmatrix} 0 & p_{x}-ip_{y} \\ p_{x}+ip_{y} & 0 \end{pmatrix} = v \begin{pmatrix} 0 & \pi^{+} \\ \pi & 0 \end{pmatrix} = v (\sigma_{x}p_{x}+\sigma_{y}p_{y}) = v\vec{\sigma}.\vec{p}$$

$$v \begin{pmatrix} 0 & p_{x}-ip_{y} \\ p_{x}+ip_{y} & 0 \end{pmatrix} \left(\begin{matrix} \psi_{A} \\ \psi_{B} \end{matrix} \right) = E \begin{pmatrix} \psi_{A} \\ \psi_{B} \end{pmatrix} \qquad v = \frac{\sqrt{3}a\gamma_{0}}{2\hbar} \approx 10^{6} m/s$$

Schrodinger equation to Dirac equation at low energy F $\psi = \begin{pmatrix} \psi_{+A} \\ \psi_{+B} \end{pmatrix}$ $\psi = \begin{pmatrix} \psi_{+A} \\ \psi_{+B} \\ \psi_{-A} \\ \psi_{-B} \end{pmatrix}$ +, - valley index +, - valley index A,B sublattice (pseudospin) index

$$H = v \begin{pmatrix} 0 & p_x - ip_y & 0 & 0 \\ p_x + ip_y & 0 & 0 & 0 \\ 0 & 0 & 0 & -p_x - ip_y \\ 0 & 0 & -p_x + ip_y & 0 \end{pmatrix}$$

Electrons and holes in condensed matter physics are normally described by separate Schrödinger equations, which are not in any way connected (Seitz sum rule)).

In contrast, electron and hole states in graphene are interconnected, analogous to the charge-conjugation symmetry in QED. This allows one to introduce chirality - formally a projection of pseudospin on the direction of motion – which is positive and negative for electrons and holes, respectively.

$$H = v \begin{pmatrix} 0 & \pi^+ \\ \pi & 0 \end{pmatrix} = v \vec{\sigma} \cdot \vec{p} = v p \vec{\sigma} \cdot \vec{n} \qquad \overrightarrow{\vec{p}} \qquad \overrightarrow{\vec{\sigma}} \cdot \vec{n} = 1$$

Electrons(holes) are chiral.

Electrons in conduction band and holes in valence band are entangled.

Plan of this talk

- Introduction to graphene bandstructure and "chirality".
- Growth and characterization of graphene.
- Robustness of universality under interlayer coupling and many body interactions.
- **Doping of graphene** to modulate the e-e interaction on universality
- How to break this universality ?

Growth and Characterization Graphene

How we grow graphene monolayer

Mechanical Exfoliation

<u>Chemical Exfoliation</u>

• Chemical Vapor Deposition

A New (?) Method for Growth of High Quality Monolayer, Bilayer and Multilayer Graphene

Controllability & Reproducibility

Atomic Force Microscopy (Graphene sheet synthesized in Propylene carbonate)

Transnission electron microscopy

Excellent Control of No of Layers

Plan of this talk

- Introduction to graphene bandstructure and "chirality".
- Growth and characterization of graphene.
- Robustness of universality under interlayer coupling and many body interactions.
- **Doping of graphene** to modulate the e-e interaction on universality
- How to break this universality ?

Fine Structure Constant Defines Visual Transparency of Graphene

R. R. Nair,¹ P. Blake,¹ A. N. Grigorenko,¹ K. S. Novoselov,¹ T. J. Booth,¹ T. Stauber,² N. M. R. Peres,² A. K. Geim¹*

6 JUNE 2008 VOL 320 SCIENCE

Origin: Dirac cone (linear dispersion) and optical properties are dictated by QED

What about bilayer, trilayer.....multilayer ?

Does it depend on inter layer coupling ?

Universal in monolayer to multilayer graphene.

No effect of interlayer coupling.

Bilayer

		A_1	B_1	A_2	B_2
$\mathrm{H}_2 =$	A_1	ε_{A_1}	$-\gamma_0 f(\mathbf{k})$	$\gamma_4 f(\mathbf{k})$	$-\gamma_3 f^*(\mathbf{k})$
	B_1	$-\gamma_0 f^*(\mathbf{k})$	ε_{B_1}	γ_1	$\gamma_4 f(\mathbf{k})$
	A_2	$\gamma_4 f^*(\mathbf{k})$	γ_1	ε_{A_2}	$-\gamma_0 f(\mathbf{k})$
	B_2	$-\gamma_3 f(\mathbf{k})$	$\gamma_4 f^*(\mathbf{k})$	$-\gamma_0 f^*({\bf k})$	ε_{B_2}

Trilayer

		A_1	B_1	A_2	B_2	A_3	B_3
$H_3 =$	A_1	ε_{A_1}	$-\gamma_0 f(\mathbf{k})$	$\gamma_4 f({f k})$	$-\gamma_3 f^*({\bf k})$	γ_2	0
	B_1	$-\gamma_0 f^*(\mathbf{k})$	ε_{B_1}	γ_1	$\gamma_4 f({f k})$	0	γ_5
	A_2	$\gamma_4 f^*(\mathbf{k})$	γ_1	ε_{A_2}	$-\gamma_0 f(\mathbf{k})$	$\gamma_4 f^*(k)$	γ_1
	B_2	$-\gamma_3 f(k)$	$\gamma_4 f^*({f k})$	$-\gamma_0 f^*(\mathbf{k})$	ε_{B_2}	$-\gamma_3 f(\mathbf{k})$	$\gamma_4 f^*({\bf k})$
	A_3	γ_2	0	$\gamma_4 f(k)$	$-\gamma_3 f^*({\bf k})$	ε_{A_3}	$-\gamma_0 f(k)$
	B_3	0	γ_5	$\gamma_1 \ 33$	$\gamma_4 f(\mathbf{k})$	$-\gamma_0 f^*({\bf k})$	ε_{B_3} (2.3)

Bilayer Graphene : 4 atoms per unit cell

$$\begin{array}{cccc} A_{2} & B_{1} & A_{2} & B_{1} & A_{1} & B_{2} & A_{1} & B_{2} \\ h_{\theta} &= & \begin{array}{c} A_{2} \begin{pmatrix} \varepsilon_{A_{1}} & v_{3}\pi \\ v_{3}\pi^{\dagger} & \varepsilon_{B_{2}} \end{pmatrix} h_{\chi} &= & \begin{array}{c} A_{2} \begin{pmatrix} \varepsilon_{A_{2}} & \gamma_{1} \\ \gamma_{1} & \varepsilon_{B_{1}} \end{pmatrix} u = & \begin{array}{c} A_{1} \begin{pmatrix} -v_{4}\pi^{\dagger} & v\pi^{\dagger} \\ v\pi & -v_{4}\pi \end{pmatrix} u^{\dagger} = & \begin{array}{c} A_{1} \begin{pmatrix} -v_{4}\pi & v\pi^{\dagger} \\ v\pi & -v_{4}\pi^{\dagger} \end{pmatrix} \\ H_{2} &= & \begin{array}{c} 1 \\ \end{array} \begin{bmatrix} 0 & (\pi^{\dagger})^{2} \\ (\pi)^{2} & 0 \end{bmatrix} \end{array}$$

H. Min and A. H. MacDonald, Phys. Rev. Lett. 103, 067402 (2009).

H. Min and A. H. MacDonald, Phys. Rev. Lett. 103, 067402 (2009).

$$\mathbf{H}_{J} = g_{J} \begin{bmatrix} 0 & (\pi^{\dagger})^{J} \\ (\pi)^{J} & 0 \end{bmatrix} = \gamma_{1} \left(\frac{v}{\gamma_{1}} \right)^{J} \begin{bmatrix} 0 & (\pi^{\dagger})^{J} \\ (\pi)^{J} & 0 \end{bmatrix}$$
$$H_{N}^{eff} = H_{J_{1}} \otimes H_{J_{2}} \otimes H_{J_{3}} \otimes H_{J_{4}} \dots \dots H_{J_{N}}$$

Inspite of inter layer coupling, chirality is protected in bilayer.....multilayerand graphite.

Hence it appears that chirality and not linear dispersion is responsible for optical transmittance universality.

Plan of this talk

- Introduction to graphene bandstructure and "chirality".
- Growth and characterization of graphene.
- Robustness of universality under interlayer coupling and many body interactions.
- **Doping of graphene** to modulate the e-e interaction on universality
- How to break this universality ?

What is the effect of e-e interaction on this universality ?

Europhys. Lett. 83, 17005 (2008) (c=0.01)

Phys. Rev. B 80, 193411 (2009) (c=0.51)

Phys. Rev. B 86, 115408 (2012). (c=0.12)

Phys. Rev. Lett. 114, 246801 (2015) (c=0.26)

Galilean invariance e^2

$$E_{C} = \frac{c}{\varepsilon \langle r \rangle}$$

$$E_{KG} = \frac{p^{2}}{2m}$$

$$\alpha_{G} = \frac{E_{C}}{E_{KG}} = \frac{n_{0}}{n^{\frac{1}{2}}}$$

Dependent on carrier density

Dirac Materials (V ≤ c) Lorentzian invariance $E_{C} = \frac{e^{2}}{\varepsilon \langle r \rangle}$ $E_{KL} = \hbar v_F \sqrt{\pi n}$ $\alpha_L = \frac{E_C}{E_{KL}} = \frac{e^2}{\varepsilon \hbar v_F}$

Independent on carrier density

How to dope graphene ?

Various routes to dope Graphene

- difficult to dope both types(p and n)
- poor controllability
- low mobility

Substrate modification

Adv. Mat. 26, 8141-8146, (2014)

Sci. Rep. 6, 21070, (2016)

Impermeability of Graphene

Impermeable Atomic Membranes from Graphene Sheets

J. Scott Bunch, Scott S. Verbridge, Jonathan S. Alden, Arend M. van der Zande, Jeevak M. Parpia, Harold G. Craighead, and Paul L. McEuen*

Cornell Center for Materials Research, Cornell University, Ithaca, New York 14853

Received May 21, 2008; Revised Manuscript Received June 12, 2008

ABSTRACT

We demonstrate that a monolayer graphene membrane is impermeable to standard gases including helium. By applying a pressure difference across the membrane, we measure both the elastic constants and the mass of a single layer of graphene. This pressurtzed graphene membrane is the world's thinnest balloon and provides a unique separation barrier between 2 distinct regions that is only one atom thick.

ARTICLE

Received 24 Apr 2014 | Accepted 29 Jul 2014 | Published 11 Sep 2014

DOI: 10.1038/ncomms5843

Impermeable barrier films and protective coatings based on reduced graphene oxide

Y. Su¹, V.G. Kravets¹, S.L. Wong¹, J. Waters², A.K. Geim¹ & R.R. Nair¹

Doping tunability: Donor and acceptor nature of trapped molecules

DFT calculations

DFT calculations using Gaussian 9.0. using Lee-Yang-Parr correlation functional (B3LYP) with 631G-basis set

DFT Results

Solvents Used	Dielectric Constant	Adsorption Energy (eV)	Distance b/n Graphene & Molecule (A ⁰)	Charge Transfer (e)	Dirac Point (FET) (Volts)	Mobilit y (cm²/V s)
THF	7.5	-0.078694	3.81	0.021	~10	7632
Chlorobenzene	5.6	0.064171	4.0	0.014	~1	11650
DMF	37.5	-1.49501	3.44	-0.025	~25-27	5598
PC(propylene carbonate)	64	-2.48779	3.47	-0.035	~25-30	5530

Plan of this talk

- Introduction to graphene bandstructure and "chirality".
- Growth and characterization of graphene.
- Robustness of universality under interlayer coupling and many body interactions.
- **Doping of graphene** to modulate the e-e interaction on universality
- How to break this universality ?

How to break universality ?

By breaking chiral symmetry?

Phys. Rev. Lett **99**, **226803**, **2007** Phys. Rev. Lett **102**, **026802** (2009) Phys. Rev. Lett. **107**, **016602** (2011) Phys. Rev. Lett. **114**, **246801** (2015) Phys. Rev. Lett. **115**, **186602** (2015)

How to break CHIRAL SYMMETRY in GRAPHENE ?

1. By electron-hole interaction (Exciton)

The attractive force that should be enough to create the electron – hole pairs that would break the chiral symmetry spontaneously. Excitonic condensate indicates opposite charges on sublattices

$$\left\langle \overline{\psi}^{a}\psi^{a}\right\rangle > 0$$

This would make quasiparticle massive and the phase insulating.

2. By antiferromagnetic ordering

Antiferromagnetic ordering of spins corresponds to opposite spin of electrons on different sublattices

$$\left\langle \overline{\psi}^{a} \sigma_{ab} \psi^{b} \right\rangle > 0$$

This also would make quasiparticle massive and should lead to metal-insulator transistion.

Exciton in Graphene

Electron-hole bound state = Exciton

$$H \neq v\vec{\sigma} \cdot \vec{p}$$

Chirality is not conserved if electron-hole bound state exists

$$h\nu > E_{ex}$$

Strong Effect of e-e Interaction

Conclusions

 \checkmark Universality is not affected by long range interactions.

✓ Chiral symmetry is responsible for optical transmittance universality.

 \checkmark Strong many body interaction when $h\,\nu > E_{ex}$

✓ Phase transition due to breaking of Chirality is not yet observed.

Thank You

