Surprising Nanophotonic Phenomena in Nature

Inferior Mirages

An inferior mirage from Florida sunset, Michael Menefee on Flickr

Inferior mirage on highway from Weatherstock.com

pbermel@purdue.edu

Inferior Mirages

When you see a mirage, you are actually seeing a reflection of the sky on the ground

http://sciencebasedlife.wordpress.com/2012/03/19/what-is-a-mirage/

Superior Mirages

Superior mirages of tanker and islands in Finland (http://virtual.finland.fi/finfo/english/mirage.html) http://www.astronomycafe.net/weird/lights/mirgal.htm

Superior Mirages

http://nsidc.org/arcticmet/basics/phenomena/superior_mirage.html

Application: Long-Distance Telecommunications

Combine 2 types of mirages for long-distance communications in a graded-index fiber

Figure 1.3-2 Trajectory of a paraxial ray in a graded-index medium.

Application: Improving Solar Cells

Photonic Simulations with S⁴

https://nanohub.org/tools/s4sim/

Photonic Simulations with S⁴

V. Liu, S. Fan, Comp. Phys. Comm. 183, 2233 (2012)

S⁴: Lua Control Files

Obtain a new, blank simulation object with no solutions:

S = S4.NewSimulation()

Define all materials:

S:AddMaterial('name', {eps_real, eps_imag})

Add all layers:

S:AddLayer('name', thickness, 'material_name') Add patterning to layers:

S:SetLayerPatternCircle('layer_name', 'inside_material',
{center_x, center_y}, radius)

S⁴: FMM Formulations

```
Specify the excitation mechanism:
```

```
S:SetExcitationPlanewave(
```

```
{angle_phi, angle_theta}, -- phi in [0,180), theta in [0,360)
{s_pol_amp, s_pol_phase}, -- phase in degrees
{p_pol_amp, p_pol_phase})
```

Specify the operating frequency:

S:SetFrequency(0.4)

Obtain desired output:

S4sim: Output Window

7/13/2016

S4sim Example: PV Front Coating

S4sim Example: PV Front Coating

Nature was the First...

Natural opal

Artificial direct and inverse opals

15

NCN SURF: Lunch and Learn

pbermel@purdue.edu

7/13/2016

http://www.australianblackopals.com/images http://www.opals-of-light-and-fire.com/web_images/black-opal-1.jpg

Self-Assembled 3D Photonic Crystal Structures: Opals

pbermel@purdue.edu

NCN SURF: Lunch and Learn

Benefits of Opal PhCs in Solar Cells

Noticeably darker than controls!

Expt'l cell with texturing and PhC

Control cell with texturing

Control cell without light trapping

PhC enhanced cell \rightarrow

30% higher J_{sc} than texturing

From the flat structure to the totally random structure via random surface texturing algorithm

[5] Keevers, M. J., et al. "10% efficiency CSG minimodules." Proceedings of the 22nd European Photovoltaic Solar Energy Conference. (2007).

Experimental absorption vs simulated absorption

- The left figure indicates the experimental absorption rate for a 1500 nm thick c-Si solar cell. It is adapted from recently published research [4]. The right figure indicates the absorption rate obtained by the simulation.
- 3-D QCRF-FDTD simulation is performed using the same geometry in order to prove its accuracy

[4] L. T. Varghese, Y. Xuan, B. Niu, L. Fan, P. Bermel, and M. Qi, "Enhanced photon management of thin-film silicon solar cells using inverse opal photonic crystals with 3d photonic bandgaps," Advanced Optical Materials 1, 692–698 (2013).

Refraction: Epsilon Near Zero

Image of a swimming pool filled with water (*n*=1.33) (computer-generated)

Image of a swimming pool filled with a substance having *n*=0.9.

Aaron Danner, **"Photorealistic ray tracing aids understanding of metamaterials,"** 12 March 2009, SPIE Newsroom. DOI: 10.1117/2.1200903.1525

Negative Refractive Index

pbermel@purdue.edu

Refraction: Negative Index

Image of a swimming pool filled with water (*n*=1.33) (computer-generated)

Pool filled with negative-index 'water' (n=- 1.33). A black line: location of the pool bottom edge and corner. The bottom of the pool seems to 'float' above ground level.

Aaron Danner, **"Photorealistic ray tracing aids understanding of metamaterials,"** 12 March 2009, SPIE Newsroom. DOI: 10.1117/2.1200903.1525

NCN SURF: Lunch and Learn

Refraction: Negative Index

Illustration: UC Berkeley

Generalized Snell's Law

⁺ Landau and Lifshitz, The Classical Theory of Fields (4 ed.)

Principle of least action \rightarrow The momenta difference between blue and red path is zero $(n_i \mathbf{k}_0 \sin \theta_i + \nabla \Phi) \mathrm{d} \mathbf{r}$ $-(n_t \mathbf{k}_0 \sin \theta_t) \mathrm{d}\mathbf{r} = 0$ since $\mathbf{k} = \nabla \Phi^{\dagger}$ **For reflection** $\sin\theta_r - \sin\theta_i = n_i^{-1} k_0^{-1} \nabla \Phi$ **For refraction** $n_t \sin\theta_t - n_i \sin\theta_i = k_0^{-1} \nabla \Phi$

In essence, momentum conservation!

Generalized Snell's Law: Recent Work

pbermel@purdue.edu

Ultra-thin Metasurface Absorbers/Emitters

S4Sim Example: Xylophone Metasurface for Light Deflection

M. Ryyan Khan, Xufeng Wang, Peter Bermel, and Muhammad A. Alam, "Enhanced light trapping in solar cells with a meta-mirror following Generalized Snell's law," *Opt. Express* **22**, A973-A985 (2014).

Xylophone Metasurface: Absorption Enhancement

M. Ryyan Khan, Xufeng Wang, Peter Bermel, and Muhammad A. Alam, "Enhanced light trapping in solar cells with a meta-mirror following Generalized Snell's law," *Opt. Express* **22**, A973-A985 (2014).

Tailoring Metamirror Response for All Angles

M. Ryyan Khan, Xufeng Wang, Peter Bermel, and Muhammad A. Alam, "Enhanced light trapping in solar cells with a meta-mirror following Generalized Snell's law," *Opt. Express* **22**, A973-A985 (2014).

Conclusions

- A wide range of surprising phenomena in nature, including mirages, opals, and negative refraction, can be understood through nanophotonics
- Further, these phenomena can be applied to improve light trapping in photovoltaics, photodetectors, and other applications
- Simulation tools available on nanoHUB including S4sim, QCRF-FDTD, and others can be leveraged to solve a broad range of problems