Practice Your Scales!
Thermal and Energy
Nanomaterials for Fast Processes
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e Pre-college: “I'll only pay for college
if you study engineering.”
- my dad (Purdue BS Mgmt '66)

« Undergraduate research (NSF/SRC
funded) led directly to interest in
graduate school

« 2 years at Motorola between en lorrance

undergrad and grad




Vanderbilt

1998-2002

e “| know about your graduate
research, and if you try to keep
doing it here,

ou will fail.”
- Dean Ken Galloway
my 2nd week at Vanderbilt




Purdue

(2002 to present)

* Recruited to help build up experimental nano
(pre Birck donation)

e Extended family unhappy with decision
not to move

~* 2nd recruitment worked
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Nanotechnology

* First project based on a cartoon Rl

Spacer

in the INAC proposal Gate
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e No idea how to make it

e Very patient mentors Buried oxide
(thank you)

A schematic of a
conceptual
CNT VFET

* Planning of the Birck Center ashir
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Practicing scales Is an age-old
method to achieve excellence

* ‘|t dawned on me that scales aren't just about
putting in the time. They are a testing ground. An
ideal laboratory or controlled environment for
developing the fundamental building blocks of
our technique.... It's an opportunity to strip away
the dozens of other variables we would otherwise
encounter ... so that we can tweak and
experiment with the little tiny details and truly
master the fundamentals.”

« Noa Kageyama, Ph.D., Why I'd Spend a Lot More
Time Practicing Scales If | Could Do It All Over
Again (http://www.bulletproofmusician.com)

e “10,000 hours is the magic number of greatness.”

HowCast: Guitar Lessons

« Malcolm Gladwell, Outliers (https://www.youtube.com/watch?v=BExds|JRDtc)

e For a deeper and more nuanced analysis, see
Hambrick et al., Intelligence 45 112 (2014)
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http://www.bulletproofmusician.com
https://www.youtube.com/watch?v=BExdsIJRDtc

Multi-scale X seems to be everywhere.
What does it mean here?

System scale - how do we incorporate real-world
dynamics into thermal/energy system design?

Micro-to-macro scale - how do we assemble
collections of nano/micro objects into ensembles
that are lightweight, fast, and reliable at the huma
scale?

Nanoscale Ill - how do we make nanoscale
synthesis go faster?
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Nanoscale |l - how do we control composition and
morphology in scalable processes?

Nanoscale | - how do we incorporate atomistic N
knowledge into nanoscale device design? Vi Zone

Atomistic - how does energy flow in
heterogeneous atomic-scale structures?

e
McKinley & Alleyne, Int. J. Refrig. 31 1253 (2008)
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Atomistic scale:
Electron-phonon coupling across
heterogeneous interfaces




Electrons are primary thermal carriers in metals.
Phonons are primary in semiconductors.
The mechanism of coupling is not clearly understood.

electrons electrons

Metal

phonons phonons




Experimental measurements suggest that direct
coupling from metal electrons to semiconductor
phonons may be a significant heat transfer pathway
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Understanding of cross-interface thermal
transport remains elusive (in general)
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Sadasivam, Waghmare, Fisher, J Appl Phys, 117 134502 (2015)
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Electron-phonon coupling across
the interface Is significant

TiSi2 atoms

Interfacial atoms
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New modelin
on CoSi

g with validating experiments
, support e-ph coupling

Experiment (TDTR)

— Average IFC
—DFPT IFC

Experiments (preliminary) by Feser group, U. Delaware
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Nanoscale |
Using atomistic knowledge
N devices (brief




GGeneral atomistic Green’s function method

Device | H |
Contact 1 (T ) No inelastic scattering Contact 2 (T )
Hl | ] H\.

Gd = [(02] - Hd - 21 - 22]_1 Device Green’s function
T _ ] _ -

21 =T,&T, 22 =T,2,T, Contact self-energies
o T o T ¢ )
I =i(2 -2)) I, =i(x%,-%,) 'Escaperate

matrices

T ((D) = Tr[rlGdrzG;] Transmission function

Matrices Ha t1 and 2 are readily obtained from bulk and cross-interface inter-atomic force constants
obtained from density functional perturbation theory (DFPT)
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Blttiker probes add inelastic scattering to the AGF

Imaginary part ot self-energy is proportional to scattering or
escape rate.




BUttiker phonon probes for
Si-Ge devices
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Nanoscale |l
Controlling nanomaterial




Everyone® wants a faster,

more durable battery

* High energy density
(volume and weight)

Combustion
engines,
Gas turbines

* High power density for
charging (less so for
discharging)

Capacitors
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e Infinite cycle life
(*except the battery

. ; 10" 10° 10’ 10? 10°
companies) Specific energy (Wh kg™
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2 Non tOXIC and Safe Xiong, Kundu, Fisher, Thermal Effects in Supercapacitors (2015)
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NICoMn-based nanoneedles

CC/GPs/INCMTHSs

GP/NCMTH
e CC = carbon cloth

NCMTH nanoneedles
’ RO
« GP = graphitic petal | /4 ,,

Carbon fiber A

e NCMTH = NiCoMn :
triple hydroxide ‘_/

\\ /' | /

GP

%Oﬂg ef a|. 5 |§|af 5' :em. K, 5 55525 :55 |§;
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Consistent nanoneedle
morphology & composition

Hydrothermal synthesis
e 1.455 g Co(NO3)2e6H20, 1.45 g

Ni(NO3)2¢6H20, 1.255 g EDX elemental mapping
Mn(NO3)2¢4H20 and 0.9 g urea 70 . _ :

Sl (%g)ro.Nl.Co.I\/In.Om Sioad ..20)
 Autoclave at 135C for 90 min e ﬁ; Sl
e Dried at 80C in air for 3 hr | v il

C Resultmg BET area of 55 m2/g

100 nm



Graphitic petal substrates




(Good overall electrochemical
performance

* Single electrodes in 2M KOH

* Clearly dominated by
pseudocapitance
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* Double hydroxide shows
much lower capacitance
(vs. triple)
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Other electrochemical
characteristics, also quite good

 Charge transfer
resistance of only 0.3 O
from Nyquist plot

* T[riple hydroxide has
much higher energy
density than double
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(compared to batteries)
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S it a battery?

Or a supercapacitor?
The ACS position The RSC position

(based on P. Simon et al, Perspective: Where do (based on Augustyn et al. Pseudocapacitive oxide
batteries end and supercapacitors begin? Science, materials for high-rate electrochemical energy storage.
343, 1210-1211, 2014) Encragy Enviten. Seli .
1597, 2014)
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Retains nanoneedle
morphology after

cycCling R
w A g

As-grown “ After 30 ;yACies
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Extremely high e —ooomve
rates in a full g S sy
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(PhD, now at NRL) ’

Nanoscale |11
Making nanomaterials
faster
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Scaling up: Roll-to-roll plasma deposition of
graphitic nanopetals

Key Features
« Custom-designed plasma
deposition system with reel
system inside vacuum chamber
= Low-frequency RF plasma
......... i couples to moving web

@ B Web width up to 10 cm, with web

* speed up to 500 cm/min (usually

much slower)
Through-chamber viewports for
optical diagnostics of the growth
region
Pyrometer temperature
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Laser diagnostics of graphene plasmas gives
a wealth of information

(arb. units)
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T ' T
: ’ 300 W H (50 see 4060 ‘ 4080 ‘ 4100 4120 4140 4160 ‘ 4180
i *500 W H-" (50 scc Raman Shift (cm™)
=1/ =300 W: H, (50 sccm) & CH, (10 sccm) 1200
500 W: H, (50 sccm) & CH, (10 sccm)

—a
N
o
o

f=-100 mm

f=+200 mm
1100

A2
1000

TP

900

L.

f=+250 mm f=+200 mm Distance Normal to Puck Surface (mm)

800

Rotational Temperature of H, (K)

700

|
A.D. Tuesta et al., J. Micro and Nano-Manufacturing, 4 011005 (2016)
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R2R diagnostics: Simple optical emission
spectroscopy gives rich and rapid output

e Emission from excited

states of molecules or A i
atoms used as an 4% H, - 31% CH, - S% N,

5% O, - 15% Ar

indication of
abundance of these
species in the mixture
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* For example, a 60-sec
survey spectrum can
be used to monitor the J
importan’[ Species N 300 400 500 600 700 800 900
the p|asma SUCh ag: Wavelength (nm)

N2, CN, CH, H and Ar
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Time-resolved spectral-spatial iImaging
porovides unigue insights into PLD of BN films
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T Glavin et al., J Appl Phys 117, 165305 (2015)
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Early results from imaging of
graphene-producing plasmas

No Pillar

Model: Gas T
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Micro-to-macro scale:
Assemblies of nano/micro
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Granular mechanics are important to an
amazingly broad array of technologies

strong [010]
columnar ordering

[
Smith & Fisher, Int. J. Hyd. Energy 37 13417 (2012)
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Variable cell approach: Enabling realistic
boundary conditions, showing hysteresis
and stick-slip

Oscillatory Shear of Granular Materials
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New results enabled by the methods in Smith et al. Physical Review E, 89 042203 (2014)
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Granular mechanics principles applied
to coarse-grain CNT array deformation
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Graphene and other nano
materials have the potential to
dramatically improve energy
technologies

Practicing all the way to
human scales is crucial to
achieve high impact
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Some general benefits to
practicing scales

* Versatility in teaching
* Broad engagement with professional societies

* [he larger the scale, the more collaborators
needed and available (did you notice?
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