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Appendix: Variability by Bootstrap
method

Ref. courses.washington.edu/matlab2/Lesson_6.html



Uncertainty in parameters: Least Square

Is the error in W Gaussian distributed ?

*

W =gInt+c Int=g"W-p7c=aW+b

Inverse fitting is more appropriate ... X = a + b*y
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MLE estimator for Weibull: Did not discuss
variability

Recall f(t;a, B) = 'B R (é)ﬁ

InL = Zlnf(t a, )
=ning-nna+(B-0>" nt/a->" (t/a)

dInL:O dInL:O
do dj

(Zt In(t)’ / itiﬂj—%ilnai)ﬂ -1« {ljﬂ

=1

Solve for unknowns a., 3



(1) Bootstrap method: Introduction

Samples drawn from the population
140 . .

120 F

wml N=25

Samples _
=2000

A

34% 34%
2
68% between +0.2 to -0.2 j:l,ZN::25 (t; —(t)) -
95% between +0.4 to -0.4 S = N _1 ~ z ~0.2

Ref. courses.washington.edu/matlab2/Lesson_6.html



Working with a single sample

0.2 -0.1 0.5 0.3 -0.6 All you have is a single sample ..

Generate synthetic samples from the original (with replacement)

0.2 -0.1 -0.6 -0.1 0.5 Synthetic sample |

0.3 0.2 -0.6 0.2 0.5 Synthetic sample 2

0.5 -0.1 0.5 0.2 0.3 Synthetic sample 3



Multiple sample vs. single sample

Samples drawn from the population Samples re-drawn from a single sample
140 T T T T T T T 1"10 T T
120f 120} N=25 Slngle
100 100 k Sample 4

50

BO -
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20F
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0.5 0.6 0.4 0z 0 0z 0.4 08 0.8
mean

Mean

Bootstrap average is not zero!
And yet, the s~0.18, just from a single sample.
The success of the method relies on precision measurement



Parametric vs. non-parametric
Bootstrap

02 -0105 03 -0 Fitthe distribution of your choice by
Maximum likelihood estimators (MLE)
(obtain parameters,i.e. g, Bo)

Generate synthetic samples based on the parametric distribution

0.12 -0.17 -0.44 -0.71 0.52  Synthetic sample | (new 14, ;)

0.32 0.21 -0.69 0.23 0.58 Synthetic sample 2 (new 173, 57)

Plot distribution of statics n;, f3;
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PDF

Distribution of o and 3

Distribution of n

PDF

Distribution of 3

Same technique for polling and tenure rate of faculty!
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Why res

ampling from the same

distribution generates new fit parameters

CDF | Original

data

(Mo, Bo) New data based on

_ __ \ (Mo, Bo)

A New Weibull fit (11, 81)

=

Z

Z

TBD

Samples taken from the same distribution (7, Bo)
generates datapoints that are fitted with new (1;, £;)
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