ECE695: Reliability Physics of Nano-Transistors
Lecture 34A: Appendix
- Variability by Bootstrap Method

Muhammad Ashraful Alam
alam@purdue.edu
Appendix: Variability by Bootstrap method

Ref. courses.washington.edu/matlab2/Lesson_6.html
Uncertainty in parameters: Least Square

Is the error in \(W \) Gaussian distributed?

\[
W \equiv \beta \ln t + c \quad \ln t \equiv \beta^{-1}W - \beta^{-1}c = a^*W + b^*
\]

Inverse fitting is more appropriate … \(x = a^* + b^* y \)

\[
a^* = \frac{n \sum x_i y_i - \sum x_i \sum y_i}{n \sum y_i^2 - (\sum y_i)^2}
\]

\[
b^* = \frac{n \sum x_i y_i - \sum x_i \sum y_i}{n \sum x_i^2 - (\sum x_i)^2}
\]

\[
\sigma_{\beta}^2 = \left(\frac{\delta \beta}{\delta a} \right)^2 \sigma_a^2 + \left(\frac{\delta \beta}{\delta b} \right)^2 \sigma_b^2
\]

\[
\sigma_c^2 = \left(\frac{\delta \beta}{\delta a} \right)^2 \sigma_a^2 + \left(\frac{\delta \beta}{\delta b} \right)^2 \sigma_b^2
\]
MLE estimator for Weibull: Did not discuss variability

Recall

\[f(t; \alpha, \beta) = \frac{\beta}{\alpha^\beta} \cdot t^{\beta-1} \cdot e^{-\left(\frac{t}{\alpha}\right)^\beta} \]

\[
\ln L = \sum_{i=1}^{n} \ln f(t_i, \alpha, \beta) \\
= n \ln \beta - n \ln \alpha + (\beta - 1) \sum_{i=1}^{n} \ln t_i / \alpha - \sum_{i=1}^{n} \left(\frac{t_i}{\alpha}\right)^\beta
\]

\[
\frac{d \ln L}{d \alpha} = 0 \quad \frac{d \ln L}{d \beta} = 0
\]

\[
\left(\sum_{i=1}^{n} t_i^\alpha \ln(t_i)^\beta \middle/ \sum_{i=1}^{n} t_i^\beta \right) - \frac{1}{n} \sum_{i=1}^{n} \ln(t_i)^\beta = 1
\]

\[
\alpha = \left[\frac{1}{n} \sum_{i=1}^{n} t_i^\beta \right]^{\frac{1}{\beta}}
\]

Solve for unknowns \(\alpha, \beta \)
(1) Bootstrap method: Introduction

- Bootstrap method: Introduction

- 68% between +0.2 to -0.2
- 95% between +0.4 to -0.4

\[s = \sqrt{\frac{\sum_{j=1}^{N=25} (t_j - \langle t \rangle)^2}{N - 1}} \sim \sqrt{\frac{1}{24}} \sim 0.2 \]

Ref. courses.washington.edu/matlab2/Lesson_6.html
Working with a single sample

All you have is a single sample..

Generate synthetic samples from the original (with replacement)

- Synthetic sample 1:
 0.2 -0.1 -0.6 -0.1 0.5

- Synthetic sample 2:
 0.3 0.2 -0.6 0.2 0.5

- Synthetic sample 3:
 0.5 -0.1 0.5 0.2 0.3
Multiple sample vs. single sample

Bootstrap average is not zero!
And yet, the $s \sim 0.18$, just from a single sample.
The success of the method relies on precision measurement.
Parametric vs. non-parametric
Bootstrap

0.2 -0.1 0.5 0.3 -0.6
Fit the distribution of your choice by
Maximum likelihood estimators (MLE)
(obtain parameters, i.e. η_0, β_0)

Generate synthetic samples based on the parametric distribution

0.12 -0.17 -0.44 -0.71 0.52
Synthetic sample 1 (new η_1, β_1)

0.32 0.21 -0.69 0.23 0.58
Synthetic sample 2 (new η_2, β_2)

Plot distribution of statics η_i, β_i
Distribution of α and β

Distribution of η

PDF

Distribution of β

PDF

Same technique for polling and tenure rate of faculty!
Why resampling from the same distribution generates new fit parameters

Samples taken from the same distribution \((\eta_0, \beta_0)\) generates datapoints that are fitted with new \((\eta_i, \beta_i)\)
References

