
A Gentle Introduction to
Uncertainty Quantification

Ilias Bilionis
Assistant Professor

Predictive Science Laboratory
School of Mechanical Engineering, Purdue University

www.predictivesciencelab.org
ibilion@purdue.edu

Objectives
• Learn what is uncertainty quantification (UQ) and why it is

important.

• Be able to distinguish between an error and an uncertainty.

• Be able to distinguish between aleatory and epistemic
uncertainties.

• Be able to use probability theory to represent both aleatory
and epistemic uncertainties.

• Be able to compute the probability of failure using Monte
Carlo simulations.

Where is UQ needed?
Building reliability

3

Uncertainty in external forcing

Fragility Curve
Simulation

Where is UQ needed?
Stock/bond portfolio allocation

4

Uncertainty in external forcing

Portfolio Risk

Where is UQ needed?
Oil reservoir operation

5

Uncertainty in field parameters
Oil produced over time

Simulation

Where is UQ needed?
Prediction of extreme weather

6

Uncertainty in initial conditions
http://hwrf.aoml.noaa.gov/

Hurricane path

What is Uncertainty
Quantification?

• Fukushima, Japan, March 11
2011

• After major earthquake, a 15
meter tsunami disables the
power supply and cooling of
three reactors. All three cores
melted in the first 3 days.

• 100,000 people were
evacuated.

• It took about a year to cool
down the reactors.

What is Uncertainty
Quantification?

Cooling systems of a
boiling water reactor

• What is the probability of a core
meltdown?

• What do we need to know in order to
compute it?

• How can we reduce it?

• What if we have missed something…

–Wikipedia

“Uncertainty quantification (UQ) is the science
of quantitative characterization and reduction of

uncertainties in applications. It tries to
determine how likely certain outcomes are if
some aspects of the system are not exactly

known.”

Formal Definition of Uncertainty
Quantification

In plain words…

Models

Experiments
Predictions about

the real world

and then…
Optimize engineering systems under this uncertainty!

Errors & Uncertainties
• Errors: are associated with the translation of math into computer code.

Examples of errors:

• round-off errors, convergence issues

• implementation bugs…

• Uncertainties: are associated with the specification of the physical model:

• values of various parameters

• initial & boundary conditions, external forcing

• constitutive laws (i.e., the physics themselves)

Aleatory vs Epistemic
Uncertainty

• Aleatory: naturally occurring randomness that we
cannot (or do not know how to) reduce.

• Epistemic: uncertainty due to lack of knowledge
that we can reduce by paying a price.

Aleatory Uncertainty Example:
Cosmic Microwave Background

Thermal radiation left over
from the Big Bang.

Arno Penzias, Rober
Wilson, 1978 Nobel Prize

Aleatory Uncertainty Example:
Double Slit Experiment

“[The quantum slit
experiment] is a phenomenon

which is impossible […] to
explain in any classical way,
and which has in it the heart
of quantum mechanics. In
reality it contains, the only

mystery of [quantum
mechanics].”

-Richard Feynman, (1965)

Aleatory Uncertainty
Example: Turbulence

How to deal with aleatory
uncertainty?

• Consider an aleatory variable s.

• The intrinsic randomness of s is described by a
probability density p(s).

D = {s1,…,sn }

p(s |D)

uncertainty
quantification

Epistemic Uncertainty Example:
Ground Contamination from Fracking

The ground is not
random…

but we don’t really
know how it looks

like… unless we drill
everywhere!

Epistemic Uncertainty Example:
Microstructure of a Specific Object

Microstructure is not random, but we don’t know exactly how it
looks like…

Epistemic Uncertainty Example:
Unknown Physical Law

Simulation of the interaction
of two biomolecules

Statistical mechanics:

p(q)∝exp −V (q)
kBT

⎧
⎨
⎩

⎫
⎬
⎭

Positions of
all atoms

Boltzmann
constant

Temperature

Empirical potential (energy of the
stem). We are not exactly sure

about its form…

How to deal with epistemic
uncertainty?

• Consider an epistemic variable s.

• The uncertainty of s is described by a probability density p(s).

• But now, p(s), measures our degree of belief about s getting a
specific value (Bayesian approach to probability).

p(s)Prior

p(s |D)∝ p(D | s)p(s)Posterior

Bayes RuleD

So, what is UQ?

probability
theory

Models

Experiments
Predictions about

the real world

and then…
Optimize engineering systems under this uncertainty!

References
• Prof. Paul Constantines' uq homework.

• Prof.’s Gianluca Iaccarino's lecture notes to
uncertainty quantification.

• Dr. Ben Kenney's finite difference code in Python.

• Wikipedia’s page on Monte Carlo.

• The guys at www.nanohub.org.

• Too many Google searches to refer to…

Example: Extremely
Important Computer Code

• You are given a computer code of
extreme importance to national
security.

• The code has works with two
parameters:

• n: the grid size that controls the
accuracy of its approximation.

• s: a physical parameter about
which you are uncertain.

• an expert physicist tells you
that s can be anything between
-1 and 1.

Example: Extremely
Important Computer Code

• The code works as follows:

x = solver(s, n)

• The result x is a vector of size n - 1. You have no idea what it
means…

• An expert engineer tells you that the following quantity is of at most
importance:

y =maxi x i
• If it gets above 1.2, we will have a catastrophic failure.

• They want you compute the probability that this happens:
p fail = P[y >1.2] = ?

Example: Extremely
Important Computer Code

• In our example:

x = solver(s, n)

• Is the uncertainty in s aleatory or epistemic?

• We don’t know and we don’t care…

• Using probability theory, we treat all cases in the
same manner.

Example: Extremely
Important Computer Code

• Go to www.nanohub.org and login using your
username.

• Open the “Workspace” tool and launch it.

• We will need some Python packages. Run this to
load them:

use -e anaconda-2.3.0

Example: Extremely
Important Computer Code

• Download the code from the svn repository:

svn checkout https://nanohub.org/tools/mcprobf/svn/trunk mcprobf

• Change working directory: cd mcprobf

• Open your favorite editor (e.g., geany), and open the file
“extremely_important_solver.py”.

• Read the documentation at the very top if you like.

• Now, let’s run the code for a grid size n = 11 an for randomly picked s’s:

python extremely_important_solver.py | less

==
 VERY IMPORTANT SOLVER
==
This program runs the solver a couple of times for
demonstration purposes.
PARAMETERS:
--
grid size: 11
--
> starting demo
Solver run 001
--
input s = -0.747
output x:
[0.01677629 0.02771111 0.03462954 0.03868628 0.04055841 0.04055841
 0.03868628 0.03462954 0.02771111 0.01677629]
critical parameter y = max(x_i) = 0.041
Solver run 002
--
input s = -0.435
output x:
[0.02089752 0.03547578 0.04525622 0.05125958 0.0541124 0.0541124
 0.05125958 0.04525622 0.03547578 0.02089752]
critical parameter y = max(x_i) = 0.054
Solver run 003
--
input s = 0.852
output x:
[-0.04906068 -0.09957009 -0.14482012 -0.17880114 -0.19700014 -0.19700014
 -0.17880114 -0.14482012 -0.09957009 -0.04906068]
critical parameter y = max(x_i) = -0.049
Solver run 004
--

Sample output

Solver run 018

input s = 0.680
output x:
[-0.12533044 -0.24579867 -0.34901066 -0.42434774 -0.46405908 -0.46405908
 -0.42434774 -0.34901066 -0.24579867 -0.12533044]
critical parameter y = max(x_i) = -0.125
Solver run 019

input s = 0.387
output x:
[0.10083067 0.18840496 0.25828789 0.30694042 0.33189865 0.33189865
 0.30694042 0.25828789 0.18840496 0.10083067]
critical parameter y = max(x_i) = 0.332
 *** CATASTROPHIC FAILLURE ***
Solver run 020

input s = 0.011
output x:
[0.03456338 0.06146756 0.08121665 0.09418066 0.10060251 0.10060251
 0.09418066 0.08121665 0.06146756 0.03456338]
critical parameter y = max(x_i) = 0.101

Example: Extremely
Important Computer Code

• Now change the value of “n” at line 56 to “10001”.

• The solver becomes more accurate, but also
slower.

• Do you see any “CATASTROPHIC FAILURE” event?

Example: Extremely
Important Computer Code

• In our example:

x = solver(s, n)

• What causes the “error” and what the
“uncertainty”?

Monte Carlo Simulations
• When we are doing UQ, we

usually have to compute
expectations of the form:

• When s is high-dimensional,
this is a difficult problem.

• Monte Carlo popularized
during WWII at Los Alamos
mainly by Stanislaw Ulam and
John von Neumann.

E[f (s)] = f∫ (s)p(s)ds.

Von Neumann, Feynman, Ulam

Monte Carlo Simulations
• We want to compute:

• The idea is simple:

• Sample the random parameter repeatedly:

• Use the empirical average to approximate the expectation:

I := E[f (s)] = f∫ (s)p(s)ds.

s1,…,sN ~ p(s)

I ≈ ÎN = f (s1)+…+ f (sN)
N

= 1
N

f
i=1

N

∑ (si)

Monte Carlo Simulations
• Wrapping it up:

• The fact at the estimate converges to the true value is known as the
law of large numbers.

• Using the central limit theorem, it is also possible to get estimates
of the error of the MC estimator:

I ≈ ÎN = f (s1)+…+ f (sN)
N

= 1
N

f
i=1

N

∑ (si)

δIN = σ̂N

N
,

In our example…

We want to compute the probability of failure:

p fail = P[y >1.2] = ?

Can we express it as an expectation so that we can use Monte
Carlo?

Example: Extremely
Important Computer Code

• In our example:

• since we have:

• and it is a simple algebra exercise to develop the
estimators

f (s) = χ {y (s;n)>α } (s):=
1, if y (s;n) >α,
0, otherwise.

⎧
⎨
⎪

⎩⎪

E[f (s)] := ∫ χ {y (s;n)>α } (s)p(s)ds := P[y >α] = p fail.

p̂N = 1
N

χ
i=1

N

∑ (si) σ̂N = p̂N (1− p̂N)
N

p fail ≈ p̂N ±1.96σ̂N

Example: Extremely
Important Computer Code

• Go back to www.nanohub.org and use geany to
open the file “example.py”. Read the
documentation.

• Skim through the code to see the implementation.

• Run the code with (you’ll have to press enter):

python example.py

Example: Extremely
Important Computer Code

Example: Extremely
Important Computer Code

• Try changing the grid size “n” at line 48 to “2”.
What do you observe?

• Try changing the grid size “n” at line 48 to 100.
What do you observe (Ctrl-C to exit)?

• Would you trust the results of our computation?

• Repeat the same exercise for different alphas (line
45).

Thank you!

