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Objectives
• Learn what is uncertainty quantification (UQ) and why it is 

important. 

• Be able to distinguish between an error and an uncertainty. 

• Be able to distinguish between aleatory and epistemic 
uncertainties. 

• Be able to use probability theory to represent both aleatory 
and epistemic uncertainties. 

• Be able to compute the probability of failure using Monte 
Carlo simulations.



Where is UQ needed? 
Building reliability
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Uncertainty in external forcing

Fragility Curve
Simulation



Where is UQ needed? 
Stock/bond portfolio allocation
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Uncertainty in external forcing

Portfolio Risk



Where is UQ needed? 
Oil reservoir operation
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Uncertainty in field parameters
Oil produced over time

Simulation



Where is UQ needed? 
Prediction of extreme weather
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Uncertainty in initial conditions
http://hwrf.aoml.noaa.gov/

Hurricane path



What is Uncertainty 
Quantification?

• Fukushima, Japan, March 11 
2011  

• After major earthquake, a 15 
meter tsunami disables the 
power supply and cooling of 
three reactors. All three cores 
melted in the first 3 days. 

• 100,000 people were 
evacuated. 

• It took about a year to cool 
down the reactors.



What is Uncertainty 
Quantification?

Cooling systems of a 
boiling water reactor

• What is the probability of a core 
meltdown? 

• What do we need to know in order to 
compute it? 

• How can we reduce it? 

• What if we have missed something…



–Wikipedia

“Uncertainty quantification (UQ) is the science 
of quantitative characterization and reduction of 

uncertainties in applications. It tries to 
determine how likely certain outcomes are if 
some aspects of the system are not exactly 

known.” 

Formal Definition of Uncertainty 
Quantification



In plain words…

Models

Experiments
Predictions about  

the real world

and then… 
Optimize engineering systems under this uncertainty!



Errors & Uncertainties
• Errors: are associated with the translation of math into computer code. 

Examples of errors: 

• round-off errors, convergence issues 

• implementation bugs… 

• Uncertainties: are associated with the specification of the physical model: 

• values of various parameters 

• initial & boundary conditions, external forcing 

• constitutive laws (i.e., the physics themselves)



Aleatory vs Epistemic 
Uncertainty

• Aleatory: naturally occurring randomness that we 
cannot (or do not know how to) reduce. 

• Epistemic: uncertainty due to lack of knowledge 
that we can reduce by paying a price.



Aleatory Uncertainty Example: 
Cosmic Microwave Background

Thermal radiation left over 
from the Big Bang. 

Arno Penzias, Rober 
Wilson, 1978 Nobel Prize



Aleatory Uncertainty Example: 
Double Slit Experiment

“[The quantum slit 
experiment] is a phenomenon 

which is impossible […] to 
explain in any classical way, 
and which has in it the heart 
of quantum mechanics. In 
reality it contains, the only 

mystery of [quantum 
mechanics].”

-Richard Feynman, (1965)



Aleatory Uncertainty 
Example: Turbulence



How to deal with aleatory 
uncertainty?

• Consider an aleatory variable s. 

• The intrinsic randomness of s is described by a 
probability density p(s). 

D = {s1,…,sn }

p(s |D)

uncertainty 
quantification



Epistemic Uncertainty Example: 
Ground Contamination from Fracking

The ground is not 
random… 

but we don’t really 
know how it looks 

like… unless we drill 
everywhere!



Epistemic Uncertainty Example: 
Microstructure of a Specific Object

Microstructure is not random, but we don’t know exactly how it 
looks like…



Epistemic Uncertainty Example: 
Unknown Physical Law

Simulation of the interaction 
of two biomolecules

Statistical mechanics: 

p(q)∝exp −V (q)
kBT

⎧
⎨
⎩

⎫
⎬
⎭

Positions of 
all atoms

Boltzmann 
constant

Temperature

Empirical potential (energy of the 
stem). We are not exactly sure 

about its form…



How to deal with epistemic 
uncertainty?

• Consider an epistemic variable s. 

• The uncertainty of s is described by a probability density p(s). 

• But now, p(s), measures our degree of belief about s  getting a 
specific value (Bayesian approach to probability). 

p(s)Prior

p(s |D)∝ p(D | s)p(s)Posterior

Bayes RuleD



So, what is UQ?

probability 
theory

Models

Experiments
Predictions about  

the real world

and then… 
Optimize engineering systems under this uncertainty!



References
• Prof. Paul Constantines' uq homework. 

• Prof.’s Gianluca Iaccarino's lecture notes to 
uncertainty quantification. 

• Dr. Ben Kenney's finite difference code in Python. 

• Wikipedia’s page on Monte Carlo. 

• The guys at www.nanohub.org. 

• Too many Google searches to refer to…



Example: Extremely 
Important Computer Code

• You are given a computer code of 
extreme importance to national 
security. 

• The code has works with two 
parameters: 

• n: the grid size that controls the 
accuracy of its approximation. 

• s: a physical parameter about 
which you are uncertain. 

• an expert physicist tells you 
that s can be anything between 
-1 and 1.



Example: Extremely 
Important Computer Code

• The code works as follows: 

x = solver(s, n) 

• The result x is a vector of size n - 1. You have no idea what it 
means…  

• An expert engineer tells you that the following quantity is of at most 
importance:

y =maxi x i
• If it gets above 1.2, we will have a catastrophic failure. 

• They want you compute the probability that this happens:
p fail = P[y >1.2] = ?



Example: Extremely 
Important Computer Code

• In our example: 

x = solver(s, n) 

• Is the uncertainty in s aleatory or epistemic? 

• We don’t know and we don’t care… 

• Using probability theory, we treat all cases in the 
same manner.



Example: Extremely 
Important Computer Code

• Go to www.nanohub.org and login using your 
username. 

• Open the “Workspace” tool and launch it. 

• We will need some Python packages. Run this to 
load them: 

use -e anaconda-2.3.0 



Example: Extremely 
Important Computer Code

• Download the code from the svn repository: 

svn checkout https://nanohub.org/tools/mcprobf/svn/trunk mcprobf 

• Change working directory: cd mcprobf 

• Open your favorite editor (e.g., geany), and open the file 
“extremely_important_solver.py”. 

• Read the documentation at the very top if you like. 

• Now, let’s run the code for a grid size n = 11 an for randomly picked s’s: 

python extremely_important_solver.py | less 



================================================================================ 
                             VERY IMPORTANT SOLVER                               
================================================================================ 
This program runs the solver a couple of times for 
demonstration purposes. 
PARAMETERS: 
-------------------------------------------------------------------------------- 
grid size:  11 
-------------------------------------------------------------------------------- 
> starting demo 
Solver run 001 
-------------------------------------------------------------------------------- 
input s = -0.747 
output x: 
[ 0.01677629  0.02771111  0.03462954  0.03868628  0.04055841  0.04055841 
  0.03868628  0.03462954  0.02771111  0.01677629] 
critical parameter y = max(x_i) = 0.041 
Solver run 002 
-------------------------------------------------------------------------------- 
input s = -0.435 
output x: 
[ 0.02089752  0.03547578  0.04525622  0.05125958  0.0541124   0.0541124 
  0.05125958  0.04525622  0.03547578  0.02089752] 
critical parameter y = max(x_i) = 0.054 
Solver run 003 
-------------------------------------------------------------------------------- 
input s = 0.852 
output x: 
[-0.04906068 -0.09957009 -0.14482012 -0.17880114 -0.19700014 -0.19700014 
 -0.17880114 -0.14482012 -0.09957009 -0.04906068] 
critical parameter y = max(x_i) = -0.049 
Solver run 004 
-------------------------------------------------------------------------------- 

Sample output



Solver run 018 
---------------------------------------------------------------------------
----- 
input s = 0.680 
output x: 
[-0.12533044 -0.24579867 -0.34901066 -0.42434774 -0.46405908 -0.46405908 
 -0.42434774 -0.34901066 -0.24579867 -0.12533044] 
critical parameter y = max(x_i) = -0.125 
Solver run 019 
---------------------------------------------------------------------------
----- 
input s = 0.387 
output x: 
[ 0.10083067  0.18840496  0.25828789  0.30694042  0.33189865  0.33189865 
  0.30694042  0.25828789  0.18840496  0.10083067] 
critical parameter y = max(x_i) = 0.332 
                         *** CATASTROPHIC FAILLURE ***                           
Solver run 020 
---------------------------------------------------------------------------
----- 
input s = 0.011 
output x: 
[ 0.03456338  0.06146756  0.08121665  0.09418066  0.10060251  0.10060251 
  0.09418066  0.08121665  0.06146756  0.03456338] 
critical parameter y = max(x_i) = 0.101



Example: Extremely 
Important Computer Code

• Now change the value of “n” at line 56 to “10001”.  

• The solver becomes more accurate, but also 
slower. 

• Do you see any “CATASTROPHIC FAILURE” event?



Example: Extremely 
Important Computer Code

• In our example: 

x = solver(s, n) 

• What causes the “error” and what the 
“uncertainty”?



Monte Carlo Simulations
• When we are doing UQ, we 

usually have to compute 
expectations of the form: 

• When s is high-dimensional, 
this is a difficult problem.  

• Monte Carlo popularized 
during WWII at Los Alamos 
mainly by Stanislaw Ulam and 
John von Neumann.

E[f (s)] = f∫ (s)p(s)ds.

Von Neumann, Feynman, Ulam



Monte Carlo Simulations
• We want to compute: 

• The idea is simple: 

• Sample the random parameter repeatedly: 

• Use the empirical average to approximate the expectation: 

I := E[f (s)] = f∫ (s)p(s)ds.

s1,…,sN ~ p(s)

I ≈ ÎN = f (s1)+…+ f (sN )
N

= 1
N

f
i=1

N

∑ (si )



Monte Carlo Simulations
• Wrapping it up: 

• The fact at the estimate converges to the true value is known as the 
law of large numbers. 

• Using the central limit theorem, it is also possible to get estimates 
of the error of the MC estimator: 

I ≈ ÎN = f (s1)+…+ f (sN )
N

= 1
N

f
i=1

N

∑ (si )

δIN = σ̂N

N
,



In our example…

We want to compute the probability of failure:

p fail = P[y >1.2] = ?

Can we express it as an expectation so that we can use Monte 
Carlo?



Example: Extremely 
Important Computer Code

• In our example: 

• since we have: 

• and it is a simple algebra exercise to develop the 
estimators 

f (s) = χ {y (s;n )>α } (s):=
1, if y (s;n) >α,
0, otherwise.

⎧
⎨
⎪

⎩⎪

E[f (s)] := ∫ χ {y (s;n )>α } (s)p(s)ds := P[y >α ] = p fail.

p̂N = 1
N

χ
i=1

N

∑ (si ) σ̂N = p̂N (1− p̂N )
N

p fail ≈ p̂N ±1.96σ̂N



Example: Extremely 
Important Computer Code

• Go back to www.nanohub.org and use geany to 
open the file “example.py”. Read the 
documentation. 

• Skim through the code to see the implementation. 

• Run the code with (you’ll have to press enter): 

python example.py



Example: Extremely 
Important Computer Code



Example: Extremely 
Important Computer Code

• Try changing the grid size “n” at line 48 to “2”. 
What do you observe? 

• Try changing the grid size “n” at line 48 to 100. 
What do you observe (Ctrl-C to exit)? 

• Would you trust the results of our computation? 

• Repeat the same exercise for different alphas (line 
45).



Thank you!


