Auger Generation as an Intrinsic Limit to Tunneling Field-Effect Transistor Performance

Jamie T. Teherani

Assistant Professor Department of Electrical Engineering Columbia University j.teherani@columbia.edu

Based on Teherani et al., Journal of Applied Physics, 2016 http://dx.doi.org/10.1063/1.4960571

COLUMBIA ENGINEERING The Fu Foundation School of Engineering and Applied Science

Collaborators

Sapan Agarwal Sandia National Laboratories

Winston Chern, Dimitri Antoniadis Massachusetts Institute of Technology

Paul Solomon IBM T.J. Watson Research Center

Eli Yablonovitch University of California, Berkeley

NSF Center for Energy Efficient Electronics Science (E3S)

Outline

- Why TFETs?
- Brief Introduction to TFETs
- State-of-the-Field for TFETs
- Auger Generation
- Rate Equation
- Comparison to BTBT
- Commentary

Why TFETs?

• One of the most *promising* beyond-CMOS devicesa

- Key potential advantages
 - looks like a MOSFET
 - drop-in replacement to existing CMOS productions lines
 - small energy-delay product

Nikonov and Young, "Benchmarking of Beyond-CMOS Exploratory Devices for Logic Integrated Circuits," 2015.

Brief Introduction to TFETs

To explain TFETs, let's begin with MOSFETs

Transfer characteristics for a MOSFET

Reducing the voltage reduces the output current and switching speed

Decreasing the SS gives improved performance at a lower voltage

What limits the SS in MOSFETs?

Band diagram for a MOSFET in the OFF-state

A thermal distribution of electrons exist in the source

OFF current is limited by a thermal tail of electrons

Gate bias lowers the barrier for electrons and current increases

SS in a MOSFET is limited to 60 mV/decade

SS in a MOSFET is limited to 60 mV/decade

Fermi-Dirac Distribution

$$f(E) \approx \exp\left(\frac{E_f - E}{kT}\right)$$

 $f(E) \Rightarrow 60 mV/decade$

SS limited to 60 mV/decade

TFET structure is similar to a MOSFET

TFET design prevents OFF current from thermal tail

TFETs turn-on by modulating the tunneling path

Since TFETs are governed by different device physics, SS can be < 60 mV/decade

State-of-the-Field for TFETs

TFET simulations suggest superior results

Many TFET simulations are in sharp contrast to experimental results

Traps and defects are certainly a big concern...

My question:

Are there <u>intrinsic</u> mechanisms that limit TFET performance?

We'll study an ideal TFET:

The concept is general and can be applied to other designs

Band-to-band tunneling occurs vertically across the channel

We turn the TFET on by $\uparrow V_G$ to $\downarrow \Delta E$

BTBT and G&R are fundamentally linked through the **wavefunction overlap**

 $\langle \psi_{v} | \psi_{c} \rangle$

Proposed mechanism, **Auger generation** (also called impact ionization):

High-energy electron (2') knocks valence electron (1') into the conduction band

Auger leakage current in experimental photodectors

Heuristic Predictor...," 2010.

To understand the photodiode results, review Auger transition

As $\downarrow E_G$, higher likelihood of *hot electron* with energy needed for generation

In TFET structure, $\downarrow \Delta E$ instead of E_G 11 Auger as $\downarrow \Delta E$

In TFET structure, $\downarrow \Delta E$ instead of E_G 11 Auger as $\downarrow \Delta E$

32

Several types of Auger generation: **CHCC** dominates for large electron concentrations **HCHH** dominates for large hole concentrations

Dominant in **p-TFETs**

Depends on $\mu = \frac{m_c}{m_v}$

Depends on $\mu \hat{\tau} - 1 = m \downarrow v / m \downarrow c$

For CHCC, probability of an electron at $E_{2'}$ limits gen. rate

For HCHH, probability of a hole at $E_{2'}$ limits gen. rate

35

Net Auger transition rate is determined by Fermi's Golden Rule:

$$U = R - G = \frac{1}{A} \frac{2\pi}{\hbar} \sum_{1,1',2,2'} P(1,1',2,2') |M|^2 \,\delta(E_1 - E_{1'} + E_2 - E_{2'}) \quad \left[\frac{\# \text{ transition}}{s \cdot \text{cm}^2}\right]$$

Counting all possible states:

Total rate is the sum of all the possible transitions

$$U = R - G = \frac{1}{A} \frac{2\pi}{\hbar} \sum_{1,1',2,2'} P(1,1',2,2') |M|^2 \,\delta(E_1 - E_{1'} + E_2 - E_{2'}) \quad \left[\frac{\# \text{ transition}}{s \cdot \text{cm}^2}\right]$$

Probability of vacant/occupied states:

Weights the transition rate by the probability that particles needed for the transition are present

$$U = R - G = \frac{1}{A} \frac{2\pi}{\hbar} \sum_{1,1',2,2'} P(1,1',2,2') |M|^2 \,\delta(E_1 - E_{1'} + E_2 - E_{2'}) \quad \left[\frac{\# \text{ transition}}{s \cdot \text{cm}^2}\right]$$

For the transition pictured:

State 1 must be vacant State 2 must be vacant State 1' must be occupied State 2' must be occupied

$$P = (1 - f_1)(1 - f_2)f_{1'}f_{2'}$$

$$\approx f_{2'}$$

Perturbation that causes the transition:

Coulomb interaction acting on the initial and final wavefunctions

$$U = R - G = \frac{1}{A} \frac{2\pi}{\hbar} \sum_{1,1',2,2'} P(1,1',2,2') |M|^2 \delta(E_1 - E_{1'} + E_2 - E_{2'}) \quad \left[\frac{\# \text{ transition}}{s \cdot \text{cm}^2}\right]$$

$$M = \iint \Psi_{1'}^{*}(r_{1})\Psi_{2'}^{*}(r_{2}) \frac{q^{2}}{4\pi\epsilon |r_{1} - r_{2}|} \Psi_{1}(r_{1})\Psi_{2}(r_{2})d^{3}r_{1}d^{3}r_{2}$$

Coulombic potential

Conservation of energy:

We can't create or destroy energy in the transition

$$U = R - G = \frac{1}{A} \frac{2\pi}{\hbar} \sum_{1,1',2,2'} P(1,1',2,2') |M|^2 \,\delta(E_1 - E_{1'} + E_2 - E_{2'}) \quad \left[\frac{\# \text{ transition}}{s \cdot \text{cm}^2}\right]$$

After a lot of math (and a few approximations),

we arrive at the generation rate per unit area

After a lot of math (and a few approximations),

we arrive at the generation rate per unit

Auger current density calculated from the generation

$$J = qG_{CHCC} \approx \frac{q^4 m_c^{-3} (kT)^2 c_u^{-2}}{4\pi^2 \hbar^7 \epsilon^2} \frac{(\mu+1)}{(2\mu+1)^2} \left| \left\langle \psi_1 \right| \psi_1 \right\rangle \right|^2 \frac{n}{N_c} \exp\left(-\frac{(2\mu+1)}{(\mu+1)} \frac{\Delta E}{kT}\right)$$

$$43$$

Auger current density calculated from the generation

44

Auger current density calculated from the generation

$$J = qG_{CHCC} \approx \frac{q^4 m_c^{-3} (kT)^2 c_u^{-2}}{4\pi^2 \hbar^7 \epsilon^2} \frac{(\mu+1)}{(2\mu+1)^2} \left| \left\langle \psi_1 \right\rangle \right|^2 \frac{n}{N_c} \exp\left(-\frac{(2\mu+1)}{(\mu+1)} \frac{\Delta E}{kT}\right)$$

$$45$$

Visualization of band-to-band tunneling in terms of energy band diagram and E-k diagram

Ideal band-to-band tunneling can only take place when $\Delta E = 0$

Band-to-band tunneling has key similarities to Auger

- Both can be viewed as generation and recombination events
- Fermi's Golden Rule can be used to calculate transition rate

•
$$U_{Auger} = R - G = \frac{1}{A} \frac{2\pi}{\hbar} \sum_{1,1',2,2'} P(1,1',2,2') |M|^2 \delta(E_1 - E_{1'} + E_2 - E_{2'})$$

BTBT

47

•
$$U_{BTBT} = R - G = \frac{1}{A} \frac{2\pi}{\hbar} \sum_{1,1'} P(1,1') |M|^2 \delta(E_1 - E_{1'})$$

•
$$M_{Auger} = \frac{q^2}{2\epsilon A} c_u \delta_{k_{\perp 1} - k_{\perp 1'} + k_{\perp 2} - k_{\perp 2'}} \langle \psi_{1'} | \psi_1 \rangle$$

• $M_{BTBT} = \int \Psi_{1'}^*(\boldsymbol{r}) \, q\phi(z) \, \Psi_1(\boldsymbol{r}) \, d^3 \boldsymbol{r}$

$$= (qF) z_{cv} \delta_{\boldsymbol{k}_{\perp 1} - \boldsymbol{k}_{\perp 1'}} \langle \psi_{1'} | \psi_1 \rangle$$

• At
$$\Delta E = 0$$
: $\frac{G_{BTBT}}{G_{CHCC}} = \frac{(qF)^2}{E_G} \frac{2\pi^2 \hbar^6 \epsilon^2}{q^4 m_c^3 (kT)^2 c_u^2} \frac{(2\mu+1)^2}{(\mu+1)} \frac{N_c}{n}$

Intrinsic on/off ratio (at turn-on) for TFETs due to Auger generation

Some remarks

Auger is intrinsic, no easy way to reduce it

- -Decreasing doping decreases Auger, but also reduces field and hence BTBT
- —Problematic for steep slope device because of Arrhenius dependence on ΔE

Auger and BTBT are both *generation* phenomena, and are tightly linked

-Decreasing Auger likely decreases BTBT as well

Simulated band-to-band tunneling Auger current current for a bilayer TFET

Future Work

- Extending the analysis to different device geometries
 - Point TFET
- Experimental verification of Auger phenomenon
 - Vary doping with electrostatic gating
- Demonstration of an Auger FET with sub-60 mV/decade SS

Summary

• Experimental TFETs have not lived up to *ideal* simulations

• We need to understand the reasons for the discrepancies

- Auger can be especially problematic for small E_G or ΔE
 - leads to significant off-state currents that may dictate subthreshold behavior

 Future TFET work must include non-ideal effects such as Auger