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Why TFETs? 
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• One of the most promising beyond-CMOS devicesa 
 

Nikonov and Young, “Benchmarking of Beyond-CMOS Exploratory Devices for Logic Integrated Circuits,” 2015. 

 
• Key potential advantages 

• looks like a MOSFET 
• drop-in replacement to existing CMOS productions lines 
• small energy-delay product 

 



Brief Introduction to TFETs 
 

To explain TFETs, let’s begin with MOSFETs 
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Transfer characteristics for a MOSFET 
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Reducing the voltage reduces the output current 
and switching speed 
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Decreasing the SS gives improved performance 
at a lower voltage 
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8 SS—subthreshold swing (mV/decade) 



What limits the SS in MOSFETs? 
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Band diagram for a MOSFET in the OFF-state 
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A thermal distribution of electrons exist in the source 
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OFF current is limited by a thermal tail of electrons 

OFF current 

n-MOSFET 
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Gate bias lowers the barrier for electrons and 
            current increases 

ON current 

n-MOSFET 
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SS in a MOSFET is limited to 60 mV/decade 
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SS in a MOSFET is limited to 60 mV/decade 

ON current 

SS limited to 
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TFET structure is similar to a MOSFET 

n-TFET n-MOSFET 
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TFET design prevents OFF current from thermal tail 

distribution 
of holes 
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TFETs turn-on by modulating the tunneling path 

Dielectric Source Drain 
Gate 

p-type n-type intrinsic 



Since TFETs are governed by different device physics, 
SS can be < 60 mV/decade 

Steeper slope, 
decreased SS 

SS—subthreshold swing (mV/decade) 19 
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State-of-the-Field for TFETs 
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TFET simulations suggest superior results 
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Simulations 

Figure adapted from Lu and Seabaugh’s Tunnel Field-Effect Transistors: State-of-the-Art, 2014 

Experimental n-MOSFET: 16-nm Low Power FinFET 
(TSMC 2013) 
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Many TFET simulations are in sharp contrast to 
experimental results 
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0.75 
VGS 

0 

Experiments 

Figure adapted from Lu and Seabaugh’s Tunnel Field-Effect Transistors: State-of-the-Art, 2014 



Traps and defects are certainly a big concern... 
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My question: 
 

Are there intrinsic mechanisms that limit TFET 
performance? 
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We’ll study an ideal TFET: 

The concept is general and can be applied to other designs 
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Band-to-band tunneling occurs vertically across the 
channel 
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BTBT and G&R are fundamentally linked through 
the wavefunction overlap 
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Proposed mechanism, Auger generation (also called impact 
ionization): 
 

High-energy electron (2’) knocks valence electron (1’) into the 
conduction band 
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Auger leakage current in experimental photodectors  
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Several types of Auger generation: 
    CHCC  dominates for large electron concentrations 
    HCHH dominates for large hole concentrations 

33 

CHCC HCHH 

Dominant for large n-type doping Dominant for large p-type doping 

Dominant in p-TFETs Dominant in n-TFETs 

h+ h+ h+ h+ h+ h+ h+ h+ h+
 e- e- e- e- e- e- e- e- e- e- e-

 

HCHH 

Dominant for large p-type doping 

Dominant in n-TFETs 

h+ h+ h+ h+ h+ h+ h+ h+ h+
 



34 

1 2 

2’ 

1’ 

e- e- e- e- e- e- e- e- e- e- e-
 



1 2 

2’ 

1’ 

35 

h+ h+ h+ h+ h+ h+ h+ h+ h+
 



Net Auger transition rate is determined by 
Fermi’s Golden Rule: 
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Counting all possible states: 
 
Total rate is the sum of all the possible transitions 
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Probability of vacant/occupied states: 
 
Weights the transition rate by the probability that particles  
needed for the transition are present  
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For the transition pictured: 
 
State 1 must be vacant  
State 2 must be vacant 
State 1’ must be occupied  
State 2’ must be occupied 



Perturbation that causes the transition: 
 
Coulomb interaction acting on the initial and final wavefunctions 
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Coulombic potential 



Conservation of energy: 
 
We can’t create or destroy energy in the transition 
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After a lot of math (and a few 
approximations), 
we arrive at the generation rate per unit 
area 

Constants Wavefunction overlap 
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Constants Wavefunction overlap 

After a lot of math (and a few 
approximations), 
we arrive at the generation rate per unit 
area 
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Band-to-band tunneling has key similarities to 
Auger 
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Some remarks 
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Simulated band-to-band tunneling 
current for a bilayer TFET 
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EDL 2011. 

Auger current 



Future Work 

• Extending the analysis to different 
device geometries 

• Point TFET 

• Experimental verification of Auger 
phenomenon 

• Vary doping with electrostatic gating 

• Demonstration of an Auger FET with 
sub-60 mV/decade SS 
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Point TFET 

Perpendicular TFET 



Summary 
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