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What are the fundamental limits to cellular sensing?
Can cells surpass these limits by communicating?

Concentration 
sensing (Berg & 
Purcell, 1977)

Gradient 
sensing 
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PHYSICS OF CHEMORECEPTION

HOWARD C. BERG AND EDWARD M. PURCELL, Department ofMolecular,
Cellular, and Developmental Biology, University ofColorado, Boulder,
Colorado 80309 and the Department of Physics, Harvard University,
Cambridge, Massachusetts 02138 U.S.A.

ABSTRACT Statistical fluctuations limit the precision with which a microorganism can,
in a given time T, determine the concentration of a chemoattractant in the surround-
ing medium. The best a cell can do is to monitor continually the state of occupation
of receptors distributed over its surface. For nearly optimum performance only a
small fraction of the surface need be specifically adsorbing. The probability that a
molecule that has collided with the cell will find a receptor is Ns/(Ns + wa), if N
receptors, each with a binding site of radius s, are evenly distributed over a cell of
radius a. There is ample room for many independent systems of specific receptors.
The adsorption rate for molecules of moderate size cannot be significantly enhanced
by motion of the cell or by stirring of the medium by the cell. The least fractional
error attainable in the determination of a concentration c is approximately
(ThaD)-/2, where D is the diffusion constant of the attractant. The number of
specific receptors needed to attain such precision is about a/s. Data on bacteriophage
adsorption, bacterial chemotaxis, and chemotaxis in a cellular slime mold are evalu-
ated. The chemotactic sensitivity of Escherichia coli approaches that of the cell of
optimum design.

INTRODUCTION

In the world of a cell as small as a bacterium, transport of molecules is effected by
diffusion, rather than bulk flow; movement is resisted by viscosity, not inertia; the
energy of thermal fluctuation, kT, is large enough to perturb the cell's motion. In
these circumstances, what are the physical limitations on the cell's ability to sense and
respond to changes in its environment? What, for example, is the smallest change in
concentration of a chemical attractant that a bacterium could be expected to measure
reliably in a given time? We begin our analysis by reviewing some relevant features
of diffusive transport and low Reynolds number mechanics. This will lead to certain
conclusions about selective acquisition of material by a cell and how this acquisition
may be influenced by the cell's movement. We then develop a theory of the signal-to-
noise relation for measurement of concentration by a cell with specific receptors,
discuss its implications for chemotactic behavior, and compare theory with experi-
ment.

DIFFUSIVE INTAKE

Consider a spherical cell of radius a immersed in an unbounded medium. The
medium contains in low concentration some molecules of species X with diffusion
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Using the fluctuation-dissipation theorem: 
Bialek & Sateyeshgar, PNAS, 2005

rapidly rebind, or it may diffuse away from the receptor into
the bulk. It thus remains unclear to what extent the result of
Berg and Purcell applies to binding reactions that are not
diffusion-limited.

Bialek and Setayeshgar (9) sought to generalize the result
of Berg and Purcell by taking into account ligand-receptor
binding dynamics. They considered a model in which
the ligand molecules can diffuse, bind the receptor upon
contact with an intrinsic association rate ka, and unbind
from the receptor with an intrinsic dissociation rate kd.
Invoking the fluctuation-dissipation theorem, they linear-
ized the nonlinear reaction-diffusion equation, to obtain
the following result for the fractional uncertainty in the
estimate for the concentration (Eq. 32 in (9)):

dc

c
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

pDscT
þ 2

kacð1$ nÞT

s

: (4)

The first term arises from the stochastic arrival of the ligand
molecules at the receptor by diffusion, whereas the second
term is due to the intrinsic stochasticity of the binding
kinetics of the receptor. Indeed, even in the limit that
D / N, such that the concentration at the receptor is con-
stant, this concentration can still not be measured with infin-
ite precision because the receptor stochastically switches
between the bound and unbound states, leading to noise in
the estimate of the receptor occupancy. This term is absent
in Eq. 3 because Berg and Purcell assume that the binding
reaction is fully diffusion-limited, meaning that the intrinsic
rates ka and kd go to infinity.

The first term of Eq. 4 should be compared with Eq. 3.
This term is considered to be the fundamental limit to the
accuracy of measuring chemical concentrations via a single
receptor, because it presents a noise floor that is solely due
to the physics of diffusion, independent of the binding
kinetics (9). Indeed, in the limit that the reaction is diffu-
sion-limited, the second term in Eq. 4 is zero, and both the-
ories should yield the same result. However, it is clear that in
addition to the geometrical factor p (which comes from the
fact that Berg and Purcell model the receptor as a reactive
disk, whereas Bialek and Setayeshgar take the receptor to
be a spherical particle), the expressions differ by a factor
1=ð2ð1$ nÞÞ. This difference can have marked implica-
tions. Although the Bialek-Setayeshgar expression predicts
that the uncertainty remains bounded even in the limit that
n/1, the Berg-Purcell expression suggests that it diverges
in this limit.

Here, we rederive the limit to the accuracy of sensing via
a single receptor (10), borrowing heavily from the work of
Agmon and Szabo (11) on diffusion-influenced reactions.
Our expression is identical to that of Berezhkovskii and
Szabo (12), who have recently independently derived this
limit for an arbitrary number of receptors, when there is
one receptor. Like the expression of Bialek and Setayeshgar

(Eq. 4), our expression consists of two terms: One term
describes the effect of the diffusive transport of the ligand
molecules to and from the receptor, and the other describes
the effect of the intrinsic binding and unbinding kinetics of
the receptor. Although the second term agrees with that of
Bialek and Setayeshgar, the first does not agree with their
expression but does agree with the expression of Berg and
Purcell (again apart from the geometric factor).

We then perform extensive tests of these expressions
by performing particle-based simulations using Green’s
function reaction dynamics (GFRD), which is an exact
scheme for simulating reaction-diffusion systems at the
particle level (13–15). The simulation results agree very
well with our expression and that of Berezhkovskii and
Szabo (12) for the full range of conditions that we consid-
ered, which spans the biologically relevant regime. This
means that the Berg-Purcell limit is the most accurate
expression for the fundamental limit to measuring chemical
concentrations.

We end by examining the assumptions of our theory un-
der biologically relevant conditions. This naturally suggests
a simple but intuitive model. This model not only explains
the origin of the factor 1=ð2ð1$ nÞÞ in the Berg-Purcell
expression, but also shows how their expression can be
generalized to reactions that are not diffusion-limited by
integrating out the rapid rebindings of dissociated mole-
cules. The model also elucidates that rebindings do not
contribute to the accuracy of sensing, because their likeli-
hood does not depend on the concentration.

METHODS AND THEORY

We consider a single receptor A in a volume V that is surrounded by a large
number NB of noninteracting ligand molecules B at concentration c¼ NB/V.
We consider the pseudo first-order limit, meaning that NB >> NA ¼ 1 and
V / N. Without loss of generality, we may assume that the receptor is
static and located at the origin, while the ligand molecules diffuse with
diffusion constant D. A ligand molecule can bind a free receptor with an
intrinsic association rate ka when the two come in contact at the contact
distance s, which is the sum of the radii of the two respective molecules.
A bound ligand molecule can dissociate from the receptor with an intrinsic
dissociation rate kd. The state of the receptor is denoted by the binary var-
iable n(t), which is one if the receptor is bound to a ligand at time t and zero
otherwise. We note that this model is identical to that of Bialek and Se-
tayeshgar (9) for the scenario of a single receptor molecule.

Following Berg and Purcell (3) and Bialek and Setayeshgar (9), we
imagine that the cell estimates the concentration c from the receptor occu-
pancy n(t) integrated over an integration time T, nT ¼ T$1

R T
0 nðtÞdt. In the

limit that the integration time T is much longer than the correlation time of
n(t), tn, the variance in our estimate nT of the true mean occupancy n is
given by

ðdnÞ2z2s2
ntn
T

¼ Pnðu ¼ 0Þ
T

¼
2Re

"bCnðs ¼ 0Þ
#

T
; (5)

where s2n ¼ hn2i$ hni2 ¼ nð1$ nÞ is the instantaneous variance and Pn(u)
and bCnðsÞ are, respectively, the power spectrum and the Laplace transform
of the correlation function Cn(t) of n(t). The uncertainty in the estimate for
the concentration c can then be obtained from Eqs. 2 and 5. In Eq. 2, the
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tc
0ðsÞ ¼ tcð1þ SðsÞÞ; SðsÞ ¼ ka

kD
!
1þ ffiffiffiffiffiffiffi

stm
p #; (14)

with the diffusion-limited rate constant kD ¼ kabs(t /N) ¼ 4psD and the
molecular timescale tm ¼ s2/D. The correlation time tn of the receptor is
then given by tn ¼ ðs2nÞ

%1 bCnðs ¼ 0Þ (Eq. 5) as

tn ¼ 1

koncþ koff
; (15)

where kon and koff are the renormalized association and dissociation rates

kon ¼
$
1

ka
þ 1

kD

%%1

¼ kakD
ka þ kD

; (16)

koff ¼
$
1

kd
þ Keq

kD

%%1

¼ kdkD
ka þ kD

; (17)

and Keq = ka/kd ¼ K%1
D is the equilibrium constant (11). The effective

association rate kon is the long-time limit of the time-dependent rate
coefficient krad(t): kon ¼ krad(t / N); it takes into account the finite rate
of diffusion and the finite probability of binding when receptor and ligand
are at contact. Similarly, koff is the effective rate at which a ligand dissoci-
ates from the receptor and diffuses into the bulk. Our simple coarse-grained
model presented below (see Results) gives an intuitive derivation of these
effective rate constants.

The uncertainty in the estimate of the concentration can be obtained by
combining Eq. 13 with Eqs. 2 and 5, yielding our principal result

dc

c
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2psDcð1% nÞT
þ 2

kacð1% nÞT

s

: (18)

The first term describes the uncertainty in the estimate of c that stems from
the stochastic diffusive arrival of the ligand molecules, whereas the second
term describes variability that results from the intrinsic binding dynamics of
the receptor. If the receptor-ligand association reaction is fully reaction-
limited, i.e., ka,kd/ 0 orD/N, then the uncertainty in the concentration
estimate is dominated by the latter term. Conversely, if the reaction is diffu-
sion-limited, ka,kd/N or D/ 0, then the first term dominates the uncer-
tainty, which is limited by the diffusive arrival and departure of the ligand
molecules to and from the receptor.

It is clear that the second term in Eq. 18 is identical to that in the expres-
sion of Bialek and Setayeshgar (9), Eq. 4. Yet, the first term, which deter-
mines the fundamental limit, is different: the expression of Bialek and
Setayeshgar misses a factor 1=ð2ð1% nÞÞ. The Berg-Purcell expression
does contain this factor, and indeed, apart from a geometrical factor, our
expression is identical to theirs in the limit that the reaction is fully diffu-
sion-limited.

RESULTS

Simulation results

To test our theory, we have performed particle-based simu-
lations. A key quantity of our theory is bCnðsÞ, Eq. 13,
because the precision of our concentration estimate directly
follows from this quantity and the gain dn=dc (see Eqs. 2
and 5). We therefore compare the power spectrum,

PnðuÞ ¼ 2Re
&bCnðs ¼ iuÞ

'

with bCnðsÞ given by Eq. 13, to that obtained from simula-
tions. The simulation scheme should not only describe the
diffusive transport at large length and timescales, but also
capture the (re)binding dynamics at short scales. Moreover,
to obtain an accurate estimate for the zero-frequency limit of
the power spectrum, which is computationally challenging,
the scheme should also be efficient. We have therefore
employed Green’s function reaction dynamics (GFRD)
(13,15,17). Like Brownian dynamics (overdamped Lange-
vin dynamics), GFRD simulates reaction-diffusion systems
at the particle level; in essence, both are numerical pro-
cedures for solving the Smoluchowski equation (17). How-
ever, while Brownian dynamics uses a fixed time-step to
propagate the particles, GFRD is an asynchronous, event-
driven kinetic Monte Carlo scheme.

The central idea of GFRD is to decompose the many-
body reaction-diffusion problem, which cannot be solved
analytically, into sets of one- and two-body problems that
can solved analytically using Green’s functions (13,17). In
the recent version of GFRD, this decomposition is per-
formed by putting single particles and pairs of particles in
mathematical domains (18), for which the reaction-diffusion
problem can be solved exactly (15). This yields for each
domain an event-type, which is either a reaction or a particle
leaving the domain, and an event-time, which is when this
event will happen. These events are then executed in chro-
nological order. Importantly, the mathematical domains
are nonoverlapping, which means that the stochastic reac-
tion-diffusion processes of the respective domains are inde-
pendent. This makes GFRD an exact scheme for simulating
reaction-diffusion problems at the particle level (15).
Because the scheme is event-driven, it is also very fast: at
the concentrations considered here, GFRD is up to 4–6
orders-of-magnitude faster than Brownian dynamics
(13,15) (for more details, see www.GFRD.org). For this
study, we exploited the spherical symmetry of the system
and that the ligand molecules only interact with the receptor,
but not among themselves.

The computational model is identical to that of our
theory, albeit in a finite volume. It consists of a static single
receptor in the center of a spherical simulation box with
diameter L, surrounded by ligand molecules that diffuse
with diffusion constant D. A ligand molecule that is in
contact with a free receptor at the contact distance s can
associate with the receptor with an intrinsic association
rate ka and then dissociate from it with an intrinsic dissoci-
ation rate kd; after dissociation, the ligand molecule is put at
contact.

Fig. 1 shows the power spectra as obtained from the
simulations (black circles) together with the prediction of
our theory (solid red line; Eq. 13), for n ¼ 0:5 and c ¼
0.4 mM. In the Supporting Material, we show results for
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The Berg-Purcell limit persists

We argue that under biologically relevant conditions,
neither condition arises and, therefore, the key assumption
of our analysis holds.

A rebinding trajectory of a ligand molecule that has just
dissociated from the receptor is very short on the timescale
at which molecules arrive from the bulk at the concentra-
tions considered here (see Fig. S1 in the Supporting Mate-
rial). Consequently, the likelihood that another molecule
interferes with such a rebinding event is negligible (see
Fig. S3); a dissociated ligand molecule rebinds the receptor
before it diffuses into the bulk as often as when it was the
only ligand molecule present in the system. Condition 1 is
thus not met and the central assumption, Eq. 9, holds.

Occasionally rebinding interferences will occur, and
Condition 1 is met. However, we argue that Eq. 9 is still
likely to hold, because Condition 2 is not met: a ligand
molecule is typically bound long enough for the previously
bound molecules to diffuse into the bulk. Consider a detec-
tor that binds a ligand with a cross-section s ¼ 10 nm, a
diffusion constant D ¼ 1 mm2 s"1, and an intrinsic rate ka
that equals the diffusion-limited rate kD ¼ 75 mM"1 s"1,
yielding an effective association rate kon ¼ 38 mM"1 s"1,
consistent with experimentally measured association rates
(21). If the ligand is present at a biologically relevant con-
centration of c ¼ 1 mM, then, for n ¼ 0:5, the time a ligand
molecule is bound to the receptor is td¼ kd

"1z 0.01 s. Dur-
ing this time, the previously bound ligand molecule, on
average, has traveled at least a distance

ffiffiffiffiffiffiffiffiffiffi
6Dtd

p
z0:3 mm:

This corresponds to ~4 times the average distance be-
tween the ligand molecules at this concentration, meaning
that, effectively, the ligand has diffused into the bulk. For
lower concentrations, the dissociation time will be longer
at constant n, and the previously bound ligand molecule
will have penetrated the bulk even deeper by the time that
the newly bound ligand molecule dissociates. We thus
expect that for concentrations up to micromolar, Condition

2 is not met—meaning that even when rebinding inter-
ferences do occasionally arise, and Eq. 9 still holds.

The other approximation of our theory, Eq. 12, ensures
that the short- and long-time behavior of S rad(tjeq) is
described correctly. Importantly, however, under the bio-
logically relevant concentrations considered here, the
receptor-binding rate of ligand molecules starting from a
uniform distribution is so low that to a good approximation
S rad(tjeq) is given by its long-time behavior,
S radðtjeqÞxe"konct (see Fig. S1). The picture that thus
emerges is that after a receptor-ligand dissociation event,
the molecules that are not in contact with the receptor truly
form a bulk reservoir:

1. They have a uniform distribution (Eq. 9), and
2. They bind the receptor in a memoryless fashion with a

constant rate konc.

A simple coarse-grained model

Ultimately, the success of Eq. 9 is due to the fact that the
time a ligand molecule spends near the receptor is very
short compared to the timescale on which ligand molecules
arrive at the receptor from the bulk, (kDc)

"1 (see Fig. S1).
On this timescale a ligand molecule at contact with the
receptor effectively either instantly (re)binds the receptor
with splitting probability preb or escapes into the bulk with
probability pesc ¼ 1 – preb. This observation naturally sug-
gests the following simple two-state model (17), in which
the system switches between a receptor-bound and a recep-
tor-unbound state with effective association and dissociation
rates (see Fig. 3).

To derive the effective dissociation rate, we note that for a
ligand molecule that has just dissociated from the receptor,
the probability that it will rebind the receptor rather
than diffuse away into the bulk is preb ¼ 1 – Srad(Njs) ¼
ka/(ka þ kD). The mean number of rounds of rebinding
and dissociation before the molecule escapes into the bulk
is then

FIGURE 3 Cartoon of the coarse-grained model.
(a) A typical time trace of the receptor state n(t) of
the original system. (b) Time trace of the coarse-
grained model. (Top-left cartoon; red) a successful
and an unsuccessful binding trajectory; (blue) a tra-
jectory inwhich a ligandmolecule undergoes a num-
ber of rounds of receptor dissociation and rebinding
before it escapes into the bulk. The key observation
is that the time amolecule spends near the receptor is
very short on the timescale at which molecules
arrive from the bulk. This makes it possible to inte-
grate out the receptor rebindings and the unsuccess-
ful arrivals of molecules from the bulk, giving the
two-state model of Eq. 19. Fig. S1 in the Supporting
Material quantifies the timescale separation. To see
this figure in color, go online.
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that the performance of the cell is near the limit set by diffusive
counting noise.

Theory
Binding to a Single Receptor. Consider a binding site for signaling
molecules, and let the fractional occupancy of the site be n. If we
do not worry about the discreteness of this one site, or about the
fluctuations in concentration c of the signaling molecule, we can
write a kinetic equation

dn!t"
dt ! k#c$1 " n!t"% " k&n!t". [2]

This equation describes the kinetics whereby the system comes
to equilibrium. The free energy F associated with binding, which
is given by the difference in the free energies of the unbound and
bound states of the receptor, is related to the rate constant
through detailed balance,

k#c
k&

! exp! F
kBT" . [3]

If we imagine that thermal fluctuations can lead to small changes
#k# and #k& in the rate constants, we can linearize Eq. 2 to
obtain

d#n
dt ! "!k#c $ k&"#n $ c!1 " n! "#k# " n!#k&. [4]

But from Eq. 3 we have

#k#

k#
"

#k&

k&
!

#F
kBT . [5]

Applying this constraint to Eq. 4, we find that the individual rate
constant fluctuations cancel, and all that remains is the fluctu-
ation in the thermodynamic binding energy #F; the resulting
equation can be written in the form

kBT
k#c!1 " n! "

d#n
dt $

kBT!k#c $ k&"

k#c!1 " n! "
#n ! #F . [6]

It is useful to note the analogy between this chemical kinetic
problem and the Langevin equation (15) for the position, X(t),
of an overdamped Brownian particle bound by a Hookean
spring. The spring generates a restoring force proportional to
position, &%X, and as the particle moves through the fluid it
experiences a viscous drag with drag coefficient &, so that the
(Newtonian) equation of motion becomes

&
dX
dt $ %X ! f!t", [7]

where f(t) is a fluctuating force. The dissipative and fluctuating
parts of the force on the Brownian particle are related through
the fluctuation–dissipation theorem

' f!t"f!t $ '"( ! 2kBT&#!'" , [8]

where kB is the Boltzmann constant and T is the temperature;
angle brackets denote ensemble averages. Intuitively, this rela-
tion is a consequence of the fact that the fluctuating and the
dissipative forces both arise because of collisions of the Brown-
ian particle with the molecules of the fluid.

More generally, the linear response, X(t), of a system from
equilibrium due to the thermodynamically conjugate ‘‘force,’’
F(t), defines the generalized susceptibility, ((t),

X!t" ! #
0

)

(!t*"F!t " t*"dt*, [9]

where we have taken 'X(t)( + 0 (Fig. 2). The generalized
susceptibility depends on the properties of the system and
completely characterizes its response to small external pertur-
bations. Fourier transforming

(̃!)" ! #
0

)

(!t"ei)tdt, [10]

the response to an external force near equilibrium becomes
X̃()) + (̃())F̃()). In its general form, the f luctuation–
dissipation theorem relates the imaginary part of the generalized
susceptibility, (̃()), which determines how much energy is
dissipated by a system as heat due to an external force, to
the power spectrum of the spontaneous fluctuations of the
corresponding coordinate, X, for the closed system in thermal
equilibrium

SX!)" !
2kBT

)
Im$(̃!)"% , [11]

where Im [. . .] refers to the imaginary part. In the present
chemical system, the ‘‘coordinates’’ are the concentrations of the

Fig. 1. Measuring the concentration of a signaling molecule by a biological
sensor, which in turn controls downstream events, is a generic task. Here,
several examples are depicted schematically for E. coli. Binding of attractant$
repellent molecules to a surface receptor complex modulates the rate of
autophosphorylation of the associated kinase. This change in kinase activity
results in a corresponding concentration change of the internal signaling
molecule, CheY,P, that controls the direction of flagellar motor rotation.
Also shown is transcription initiation, where the promoter region can be
regarded as a sensor for transcription factors (TF). These proteins, whose
concentrations vary depending on the cell cycle and external cues, determine
whether or not RNA polymerase (RNAP) turns on a gene.
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Once again, the Berg-Purcell limit persists
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=

〈∑N
i=1 cos2 θi

〉

(4πDa2T)2 = ⟨N⟩⟨cos2 θ⟩
(4πDa2T)2 = c0

12πDa3T
. [6]

The derivation of Eq. 6 made use of the independence of the parti-
cles to factorize the expectation value as ⟨∑N

i=1
∑N

i̸=j cos θi cos θj⟩ =
⟨N(N − 1)⟩⟨cos θ⟩2 = ⟨N⟩2⟨cos θ⟩2, because the number of
absorbed particles N is Poisson distributed. We also used ⟨N⟩ =
4πDac0T , as well as ⟨cos2 θ⟩ = 1/3. (The relation ⟨cos2 θi⟩ =
⟨cos2 θ⟩ for absorbed particles holds even in the presence of a
true gradient in the z direction because the gradient-weighted
contribution ⟨cos3 θ⟩ is zero.)

In three dimensions, the total uncertainty of the gradient,
normalized by c0/a, is given by

⟨(δcr⃗)2⟩
(c0/a)2 = 3⟨(δcz)2⟩

(c0/a)2 = 1
4πDac0T

, [7]

with the factor of 3 arising because each component of the gradi-
ent contributes independently to the total uncertainty. This result
for the uncertainty in gradient sensing is independent of the mag-
nitude of the actual gradient present, including the case when
no actual gradient is present. Curiously, the result is numerically
identical to the concentration-measurement uncertainty (Eq. 1).

Perfectly Monitoring Sphere. Here, we extend Berg and Purcell’s
analysis of the perfectly monitoring sphere (“perfect instrument”)
to include gradient sensing. Specifically, we assume that the moni-
toring sphere measures not only the number, but also the positions
of all particles in its volume (Fig. 2C). The best estimate of the
gradient is obtained by fitting a concentration gradient with a
c = c0 + c⃗r · r⃗ to the observed time-averaged number density
1
T

∫
dtρobs(t) = 1

T

∫
dt

∑N
i=1 δ(r⃗ − r⃗i(t)), obtained by measuring the

exact positions of all the particles inside the volume of the sphere
for a time T . As above we focus on one component of the gradi-
ent, namely the gradient in the z direction cz, and obtain as a best
estimate

cz =
1
T

∫
dt

∫
dV z ρobs(t)∫
dV z2 , [8]

where the integral
∫

dV is over the volume of the sphere. We are
interested in the variance of this estimated gradient

⟨(δcz)2⟩ =
〈
c2

z
〉
− ⟨cz⟩2 [9]

=
(

15
4πa5

)2 [〈
m2

z,T
〉
− ⟨mz,T ⟩2],

where we have used
∫

dVz2 = 4πa5/15 and have defined

mz,T = 1
T

∫
dt

∫
dV z ρobs(t), [10]

namely, mz,T is the time-averaged total z coordinate of particles
inside the sphere. The expectation values in Eq. 9 are therefore
given by

〈
m2

z,T
〉
= 1

T2

〈(∫
dt

∫
dV z ρobs(t)

)2
〉

[11]

= 1
T2

∫ T

0
dt

∫ T

0
dt′⟨mz(t)mz(t′)⟩,

⟨mz,T ⟩ = 1
T

〈(∫
dt

∫
dV z ρobs(t)

)〉

= 1
T

∫ T

0
dt⟨mz(t)⟩,

where the quantity mz(t) is the total of the z coordinates of all
the particles inside the sphere at time t. To calculate mz(t), we

Fig. 2. Idealized models for gradient sensing by a cell. The gradient points
along the z axis, which is shown horizontally. (A) Continuum model for a
perfectly absorbing sphere. The mean particle current density j(θ) imping-
ing on the sphere has axial symmetry; θ measures the angle with respect to
the z axis. At steady state, the particle concentration c is zero immediately
outside the perfectly absorbing sphere, as shown schematically by the red
curve superposed on the dotted background gradient. (B) Discrete particle
model for the perfectly absorbing sphere. From the number and positions
of particles absorbed during time T , the background particle concentration
and gradient can be estimated. (C) Perfectly monitoring sphere. Particles dif-
fuse in and out of the sphere without resistance. By monitoring, for a time
T , the number and positions of particles inside the sphere, the background
concentration and gradient can be estimated.

consider the sphere embedded inside a much larger volume con-
taining a total of M particles. Then, mz(t) = ∑M

i=1 zi(t), where zi
is the z coordinate of particle i if this particle is inside the sphere
and is zero otherwise. On average there will be ⟨N⟩ = 4

3 πa3c0
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cells. Interestingly, a direct spatial mode of sensing has also been
demonstrated for the large oxygen-sensing bacterium Thiovulum
majus (Thar and Kühl, 2003), indicating that direct gradient sensing
is widespread among the different kingdoms of life.

There has been great progress in understanding the limits of
concentration sensing in bacteria such as E. coli, pioneered by Berg
(Berg, 1999; Sourjik and Berg, 2002; Berg and Purcell, 1977), and in
understanding the origins of sensitivity in the underlying signaling
network, pioneered by Bray (Bray et al., 1998, 2007; Duke and Bray,
1999; Bray, 2002), and followed by others (Sourjik and Berg, 2004;
Mello and Tu, 2005; Keymer et al., 2006; Endres and Wingreen,
2006; Hansen et al., 2008; Endres et al., 2008). By contrast, very little
is known about what determines the accuracy of direct gradient
sensing by eukaryotic cells. Recently, we derived the fundamental
physical limits of direct gradient sensing, where the accuracy is
limited by the random arrival of particles at the cell surface due to
diffusion (Endres and Wingreen, 2008). We used as models
a perfectly absorbing sphere and a perfectly monitoring sphere (à la
Berg and Purcell (1977)). In these two models, gradients are inferred
from the positions of particles absorbed on the surface of a sphere or
the positions of freely diffusing particles inside a spherical volume,
respectively. The latter case simulates rebinding of particles, as
particles can enter and exit the spherical volume freely. In compar-
ison, for the perfectly absorbing sphere, previously observed parti-
cles are never remeasured. As a result, we found that the perfectly
absorbing sphere is superior to the perfectly monitoring sphere,
both for concentration and gradient sensing (Table 1).

The superiority of the absorbing sphere may help explain the
presence at the surfaces of cells of signal degrading enzymes, such
as PDE for cAMP in Dicty and BAR1 for mating factor a in S. cer-
evisiae. Those surface enzymes could reduce or eliminate rebinding
(and therefore remeasurement) of the same signal molecule.
Quantitatively, our theory compares favorably to recent measure-
ments of Dicty moving up shallow cAMP gradients (van Haastert
and Postma, 2007), suggesting that these cells operate near the
physical limits of gradient detection.

While our recent models of the absorbing and monitoring
spheres allowed us to derive the fundamental limit of gradient
sensing, the models neglect the details of biochemical reactions,
such as particle-receptor binding and downstream signaling events,
which might further increase measurement uncertainty. To study
the effects of particle-receptor binding, we here extend a formalism
for the uncertainty of concentration sensing recently developed by
Bialek and Setayeshgar (2005, 2008), to the case of gradient sensing.
This formalism uses the fluctuation-dissipation theorem to infer the
fluctuations of the receptor occupancy (and hence the accuracy of
concentration sensing) from the linear response of the average
receptor occupancy to changes in receptor binding free energies. The
effect of particle rebinding is included by coupling particle-receptor

binding to the diffusion equation (Bialek and Setayeshgar, 2005),
leading to correlations in time among the receptors. We report
analytical results for two receptors (Fig. 1), as well as two coaxial
rings of receptors, e.g. one at each cell pole (Fig. 2). By assuming
diffusion-limited particle binding to the receptors, we are able to
directly compare to our previous model for the fundamental limits of
gradient sensing. For realistic receptors, we find that particle
rebinding lowers the accuracy of gradient sensing in line with our
previous results for the absorbing and monitoring spheres (Table 1).

2. Methods

Bialek and Setayeshgar (2005) previously presented a method
based on the fluctuation-dissipation theorem (FDT) (Kubo, 1966) to
calculate the accuracy of measurement of chemical concentration
by receptors. We extend their method to calculate the accuracy of
measurement of concentration gradients, and derive analytical
results for (1) two receptors and (2) two coaxial rings of receptors,
e.g. one at each cell pole. We start our derivation by considering an
arbitrary number m of receptors.

The kinetics of the ensemble-average occupancy nj(t) of receptor
j due to binding and unbinding of chemical ligands at the local
concentration cð x!j; tÞ is given by

dnjðtÞ
dt

¼ kþc
!

x!j; t
"#

1% njðtÞ
$
% k%njðtÞ: (1)

Linearization about the mean steady-state occupancy nj ¼
kþcj=ðkþcj þ k%Þ at concentration cj ¼ cð x!j; tÞ gives

d
!
dnjðtÞ

"

dt
¼ %

!
kþcj þ k%

"
dnj þ cj

!
1% nj

"
dkþ % njdk%

þ kþ
!
1% nj

"
dcj: (2)

By thermodynamics, the ratio of binding and unbinding rates is
related to the free-energy difference Fj between the unbound and
bound states of the receptor according to

Table 1
Uncertainties in measured concentration and concentration gradient for two
idealized cell models: a perfectly absorbing sphere (second column) and a perfectly
monitoring sphere (third column). Also provided is the ratio of the uncertainties of
the absorber and monitor. Parameters: diffusion constant D, radius of sphere a,
averaging time T, and average chemical concentration c0. Table reproduced from
Ref. (Endres and Wingreen, 2008).

Measurement
uncertainty

Perfect
absorber

Perfect monitor Ratio
absorber/monitor

Concentration:
CðdcÞ2D

c2
0

1
4pDac0T

3
5pDac0T

(Berg and Purcell, 1977)

12
5
¼ 2:4

Gradient:
Cðdc r!Þ

2D

ðc0=aÞ2
1

4pDac0T
15

7pDac0T
60
7

z8:6

Fig. 1. Model for gradient sensing by two individual cell-surface receptors. Particles
diffuse through the medium and randomly bind to and unbind from receptors, e.g. see
the two sample paths indicated by black arrows. Particles may rebind the same (1) or
a different (2) receptor. The receptor separation is given by r.

Fig. 2. Model for gradient sensing by two polar rings of surface receptors. Particles
diffuse through the medium and randomly bind to and unbind from receptors. Parti-
cles may rebind the same or different receptors (e.g. path of black arrows). Rings of
receptors are separated by distance r. Also shown is receptor dimension s.
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D
½dðc1 þ c2Þ=2%2s

E
¼ c0

mkþð1' nÞs
þ c0

2mpDs

!
1
s
þ

F
2
þ 1

2r

"
: (40)

The factor 1/m in Eqs. (39) and (40) reflects signal averaging by
multiple receptors, which reduces the measurement uncertainty
with respect to the case of two receptors. The possibility of
rebinding to other receptors within the same ring leads to corre-
lations among the signals, which are reflected in the extra term F/2
in the rebinding noise.

3.4. Comparison with the perfect monitor and the perfect
absorber models

To make comparison to our results for the perfectly absorbing
and monitoring spheres (Table 1), which do not include particle-
receptor kinetics, we replace kþ(1 ' n)c0 by 4pDsc0 for the
minimum uncertainty case set by diffusion-limited binding. To
specifically compare with the perfectly absorbing sphere, we
neglect the second term in Eqs. (39) and (40) (thereby neglecting
rebinding of particles) and obtain for gradient and concentration
sensing

D
½dðc1 ' c2Þ%

2
s

E.
r2

ðc0=rÞ2
¼

1
pDa0c0s

(41)

D
½dðc1 þ c2Þ=2%2s

E

c2
0

¼ 1
4pDa0c0s

(42)

respectively. To specifically compare with the perfectly monitoring
sphere we keep both terms in Eqs. (39) and (40) and obtain for
gradient and concentration sensing

D
½dðc1 ' c2Þ%

2
s

E.
r2

ðc0=rÞ2
¼ 1

pDa0c0s

#
3þ s

!
F' 1

r

"$
(43)

D
½dðc1 þ c2Þ=2%2s

E

c2
0

¼
1

4pDa0c0s

#
3þ s

!
Fþ

1
r

"$
: (44)

The parameter a0 ¼ ms is the combined receptor dimension,
ultimately limited by the cell dimension. Note that in Eqs. (41)
and (43) for gradient sensing we normalized by (c0/r)2, and in Eqs.
(42) and (44) for concentration sensing we normalized by c0

2 in
order to use the same notation as Table 1 and Ref. (Endres and
Wingreen, 2008).

As a result, for r ( s, i.e. receptor separation larger than receptor
size, the measurement uncertainty with rebinding (Eqs. (43) and
(44)) is always larger than the measurement uncertainty without
rebinding (Eqs. (41) and (42)) for both gradient and concentration
sensing. Hence, the absorber is superior to the monitor even when
receptor binding kinetics are explicitly included in line with our
previous finding (Table 1). Specifically, for diffusion-limited
binding, the dominant effect of particle rebinding (Eqs. (43) and
(44)) is simply an increased numerical prefactor, also in line with
our results for the perfect absorber and perfect monitor models.

In conclusion, we found that the accuracy of concentration and
gradient measurement without ligand rebinding is higher than the
accuracy with rebinding, confirming the superiority of the absorber
over the monitor (Endres and Wingreen, 2008). Our model of two
coaxial rings qualitatively resembles the polar clusters found
abundantly in bacteria and archaea (Gestwicki et al., 2000). Hence,
our model may be directly suitable for describing the concentration

sensing by these organisms and possibly also for oxygen-gradient
sensing by the bacterium T. majus (Thar and Kühl, 2003). Further-
more, a number of mechanistic models for gradient sensing and
chemotaxis by eukaryotic cells have addressed the important
questions of cell polarization, signal amplification, and adaptation
(Meinhardt, 1999; Skupsky et al., 2005; Narang, 2006; Levine et al.,
2006; Krishnan and Iglesias, 2007; Onsum and Rao, 2007; Otsuji
et al., 2007), cell movement of individual cells (Dawes et al., 2006;
Dawes and Edelstein-Keshet, 2007), cell aggregation (Plsson et al.,
1997), as well as sensing of fluctuating concentrations (Bialek and
Setayeshgar, 2005; Rappel and Levine, 2008; Goodhill and Urbach,
1999; Wylie et al., 2006). Our results on the accuracy of gradient
sensing complement these models, and may ultimately help lead to
a comprehensive description of eukaryotic chemotaxis (Iglesias and
Devreotes, 2008).
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Physical Limits on Cellular Sensing of Spatial Gradients
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Many eukaryotic cells are able to detect chemical gradients by directly measuring spatial concentration

differences. The precision of such gradient sensing is limited by fluctuations in the binding of diffusing

particles to specific receptors on the cell surface. Here, we explore the physical limits of the spatial

sensing mechanism by modeling the chemotactic cell as an Ising spin chain subject to a spatially varying

field. Our results demonstrate that the accuracy to sense the gradient direction not only increases

dramatically with the cell size but also can be improved significantly by introducing receptor coopera-

tivity. Thus, receptor coupling may open the possibility for small bacteria to perform spatial measure-

ments of gradients, as supported by a recent experimental finding.
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Cells often direct their motion under the guidance of
chemical gradients. This is essential for critical biological
functions including neuronal development, wound repair,
and cancer spreading [1]. To detect gradients, small organ-
isms like bacterial cells usually employ a temporal sensing
strategy by measuring and comparing concentration sig-
nals over time along their swimming tracks [2]. In contrast,
eukaryotic cells are sufficiently large to implement a spa-
tial sensing mechanism, as they can measure the concen-
tration differences across their cell bodies. Measurements
for both strategies are accomplished by specific cell-
surface receptors which diffusing chemical particles (li-
gands) can bind to. Spatial sensing among eukaryotes
exhibits a remarkable sensitivity to gradients of merely
1%–2% across the cell [3–5]. Given the dynamic fluctua-
tions in ligand-receptor interaction, the receptor signal is
inherently noisy, as demonstrated by single-cell imaging
experiments [6]. This naturally raises a question concern-
ing the reliability of spatial gradient sensing.

In analyzing bacterial chemotaxis, Berg and Purcell
showed that the minimal uncertainty of concentration sens-
ing is set by the diffusion of ligand particles [7]. This work
has been extended to include ligand-receptor binding ef-
fects and possible receptor cooperativity [8–13]. Instead of
measuring the mean concentration, the spatial sensing
program concerns the acquisition of information regarding
the asymmetry in space (the gradient steepness and direc-
tion). Still, the accuracy of gradient measurements must be
limited by physical laws governing ligand diffusion and
stochastic receptor-ligand dynamics. Previous studies on
gradient sensing limits are either based on idealized
mechanisms in absence of kinetics [11], or restricted to
one-dimensional simplifications in which sensing is a dis-
crete choice [13], or rely on heuristic signal transduction
models [14]. Thus, the precise attainable accuracy remains
unknown for directional sensing. In this Letter, we address
this problem more generally using a statistical mechanical
approach, where we view the surface receptors as a (pos-

sibly coupled) spin chain and treat the chemical gradient as
a perturbation field. By calculating the system’s partition
function, we are able to derive the gradient sensing limits
both for independent receptors and for receptors exhibiting
cooperativity. Our results indicate that the spatial sensing
strategy may not be exclusive to large eukaryotic cells, but
also be applicable to some small bacteria [15], especially
with the aid of receptor cooperativity.
We consider a circular cell with diameter L immersed in

a chemoattractant gradient (Fig. 1) and suppose that there
are N receptors distributed at equally spaced intervals on
the cell perimeter [16]. The angular coordinates of these
receptors are indicated by ’n ¼ 2!n=N for n ¼ 1; . . . ; N.
For analytical convenience, we assume that the gradient
field takes an exponential profile, as was recently realized
in experiments utilizing the social amoeba Dictyostelium
[5,17]. The local concentration at the nth receptor is Cn ¼
C0 exp½p2 cosð’n !"Þ&, where C0 is the background con-
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FIG. 1. Schematic representation of our model: a circular cell,
covered with receptors, is placed in an exponential gradient. The
forward and backward rates k' control the transition between
the bound and unbound states for the receptors.
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〈∑N
i=1 cos2 θi

〉

(4πDa2T)2 = ⟨N⟩⟨cos2 θ⟩
(4πDa2T)2 = c0

12πDa3T
. [6]

The derivation of Eq. 6 made use of the independence of the parti-
cles to factorize the expectation value as ⟨∑N

i=1
∑N

i̸=j cos θi cos θj⟩ =
⟨N(N − 1)⟩⟨cos θ⟩2 = ⟨N⟩2⟨cos θ⟩2, because the number of
absorbed particles N is Poisson distributed. We also used ⟨N⟩ =
4πDac0T , as well as ⟨cos2 θ⟩ = 1/3. (The relation ⟨cos2 θi⟩ =
⟨cos2 θ⟩ for absorbed particles holds even in the presence of a
true gradient in the z direction because the gradient-weighted
contribution ⟨cos3 θ⟩ is zero.)

In three dimensions, the total uncertainty of the gradient,
normalized by c0/a, is given by

⟨(δcr⃗)2⟩
(c0/a)2 = 3⟨(δcz)2⟩

(c0/a)2 = 1
4πDac0T

, [7]

with the factor of 3 arising because each component of the gradi-
ent contributes independently to the total uncertainty. This result
for the uncertainty in gradient sensing is independent of the mag-
nitude of the actual gradient present, including the case when
no actual gradient is present. Curiously, the result is numerically
identical to the concentration-measurement uncertainty (Eq. 1).

Perfectly Monitoring Sphere. Here, we extend Berg and Purcell’s
analysis of the perfectly monitoring sphere (“perfect instrument”)
to include gradient sensing. Specifically, we assume that the moni-
toring sphere measures not only the number, but also the positions
of all particles in its volume (Fig. 2C). The best estimate of the
gradient is obtained by fitting a concentration gradient with a
c = c0 + c⃗r · r⃗ to the observed time-averaged number density
1
T

∫
dtρobs(t) = 1

T

∫
dt

∑N
i=1 δ(r⃗ − r⃗i(t)), obtained by measuring the

exact positions of all the particles inside the volume of the sphere
for a time T . As above we focus on one component of the gradi-
ent, namely the gradient in the z direction cz, and obtain as a best
estimate

cz =
1
T

∫
dt

∫
dV z ρobs(t)∫
dV z2 , [8]

where the integral
∫

dV is over the volume of the sphere. We are
interested in the variance of this estimated gradient

⟨(δcz)2⟩ =
〈
c2

z
〉
− ⟨cz⟩2 [9]

=
(

15
4πa5

)2 [〈
m2

z,T
〉
− ⟨mz,T ⟩2],

where we have used
∫

dVz2 = 4πa5/15 and have defined

mz,T = 1
T

∫
dt

∫
dV z ρobs(t), [10]

namely, mz,T is the time-averaged total z coordinate of particles
inside the sphere. The expectation values in Eq. 9 are therefore
given by

〈
m2

z,T
〉
= 1

T2

〈(∫
dt

∫
dV z ρobs(t)

)2
〉

[11]

= 1
T2

∫ T

0
dt

∫ T

0
dt′⟨mz(t)mz(t′)⟩,

⟨mz,T ⟩ = 1
T

〈(∫
dt

∫
dV z ρobs(t)

)〉

= 1
T

∫ T

0
dt⟨mz(t)⟩,

where the quantity mz(t) is the total of the z coordinates of all
the particles inside the sphere at time t. To calculate mz(t), we

Fig. 2. Idealized models for gradient sensing by a cell. The gradient points
along the z axis, which is shown horizontally. (A) Continuum model for a
perfectly absorbing sphere. The mean particle current density j(θ) imping-
ing on the sphere has axial symmetry; θ measures the angle with respect to
the z axis. At steady state, the particle concentration c is zero immediately
outside the perfectly absorbing sphere, as shown schematically by the red
curve superposed on the dotted background gradient. (B) Discrete particle
model for the perfectly absorbing sphere. From the number and positions
of particles absorbed during time T , the background particle concentration
and gradient can be estimated. (C) Perfectly monitoring sphere. Particles dif-
fuse in and out of the sphere without resistance. By monitoring, for a time
T , the number and positions of particles inside the sphere, the background
concentration and gradient can be estimated.

consider the sphere embedded inside a much larger volume con-
taining a total of M particles. Then, mz(t) = ∑M

i=1 zi(t), where zi
is the z coordinate of particle i if this particle is inside the sphere
and is zero otherwise. On average there will be ⟨N⟩ = 4

3 πa3c0
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Fig. 2. Idealized models for gradient sensing by a cell. The gradient points
along the z axis, which is shown horizontally. (A) Continuum model for a
perfectly absorbing sphere. The mean particle current density j(θ) imping-
ing on the sphere has axial symmetry; θ measures the angle with respect to
the z axis. At steady state, the particle concentration c is zero immediately
outside the perfectly absorbing sphere, as shown schematically by the red
curve superposed on the dotted background gradient. (B) Discrete particle
model for the perfectly absorbing sphere. From the number and positions
of particles absorbed during time T , the background particle concentration
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T , the number and positions of particles inside the sphere, the background
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consider the sphere embedded inside a much larger volume con-
taining a total of M particles. Then, mz(t) = ∑M

i=1 zi(t), where zi
is the z coordinate of particle i if this particle is inside the sphere
and is zero otherwise. On average there will be ⟨N⟩ = 4
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Amoebae appear to approach the limit

Fig. 1. Comparison between the Chemotactic Index determined by experi-
ment (symbols and dashed lines) and our theory (solid curves). Chemotactic
Index is defined as the distance moved by a cell in the direction of a gradi-
ent divided by the total distance moved. Experimental data were obtained
by van Haastert and Postma (6) from Dictyostelium discoideum cells migrat-
ing toward pipettes containing four different cAMP concentrations, 0.1 µM
(squares), 1 µM (triangles), 10 µM (diamonds), 100 µM (circles). The theoret-
ical curves were obtained for a perfectly absorbing sphere by using a single
fitting parameter Da3T = 1.2 ·105 µm5, corresponding to, e.g., a cAMP diffu-
sion constant of D = 300 µm2/s, a cell radius of a = 5 µm, and an averaging
time T = 3.2 s, using the gradient profiles from ref. 6 and the Chemotac-
tic Index from Eq. 21. Experimentally, the Chemotactic Index only reaches
approximately 0.9 at zero distance, so we rescale our theory curves by 0.9.
(Inset) Chemotactic Index as a function of (c0

z )2
/c0 in units of nM/(µm)2,

where c0
z and c0 are the gradient and concentration, respectively.

inside its volume, and improves accuracy by averaging over sev-
eral statistically independent measurements. A simple estimate
for the resulting uncertainty in concentration can be obtained as
follows: the number N is Poisson distributed and the cell counts
appoximately N = a3c particles in its volume at any time. During
a time T , the cell can make Nmeas = T/(a2/D) independent mea-
surements, where a2/D is the typical turnover time for particles
inside the sphere, leading to

⟨(δc)2⟩
c2 = ⟨(δN)2⟩

N2 = 1
NmeasN

≈ 1
DacT

. [2]

Berg and Purcell (8) derived the exact concentration-
measurement uncertainty for a perfectly monitoring sphere (“per-
fect instrument”) from the time correlations of particles inside the
sphere, and obtained

⟨(δc)2⟩
c2 = 3

5πDacT
, [3]

which is identical to the estimate in Eq. 2 up to a numerical
prefactor.

However, notice that the concentration-measurement uncer-
tainty of the perfectly absorbing sphere is actually smaller than
that of a perfectly monitoring sphere of the same size, because the
perfectly absorbing sphere removes particles from the environ-
ment, and hence does not measure the same particle more than
once.

Limits of Gradient Sensing
Now consider the perfectly absorbing sphere and the perfectly moni-
toring sphere as devices for measuring the local gradient of a certain
dissolved chemical. In both cases, measurements of discrete par-
ticles can be compared with the expected continuous distribution
of particles originating from a particular gradient (Fig. 2A), and
hence, the gradient can be estimated. Here, we present, in brief, a
theoretical derivation of the intrinsic uncertainty of gradient sens-
ing [for details see supporting information (SI) Appendix (PDF)].
We find that the intrinsic uncertainty is independent of the actual
gradient present, and is always much smaller (by a factor of 7/60
≃ 12%) for the perfectly absorbing sphere.

Perfectly Absorbing Sphere. The average particle current density j⃗ =
−D∇⃗c impinging on the surface of a perfectly absorbing sphere
of radius a at steady state follows from the diffusion equation,
∇2c = 0, and is given in polar coordinates by

j(θ , φ) = Dc0

a
+ 3Dc⃗r · e⃗(θ , φ), [4]

where c0 is a constant background concentration, c⃗r is the back-
ground gradient, and e⃗(θ , φ) = (cos φ sin θ , sin φ sin θ , cos θ) is a
unit vector normal to the surface of the sphere (see Fig. 2A). To
best estimate the chemical gradient from an observed discrete den-
sity of particles absorbed at the surface of the sphere during time
T (Fig. 2B), fit the observed density σ obs

T = ∑N
i=1 δ(r⃗− r⃗i), where N

is the total number of absorbed particles, to the expected density
j(θ , φ)T from Eq. 4. Because the estimates of the components of
the gradient in the x, y, and z directions are independent, without
loss of generality, we consider only the gradient estimate in the
z direction, i.e., cz = ∂c/∂z, and later generalize to an arbitrary
gradient. From the best fit, the estimate for the gradient in the
z direction after absorption of particles for a time T is given by

cz =
∫

σ obs
T cos θ dA
4πDa2T

=
∑N

i=1 cos θi

4πDa2T
, [5]

where θi is the polar angle of the ith absorbed particle. We are inter-
ested in the uncertainty (accuracy) of the gradient measurement,
which is given by the variance

⟨(δcz)2⟩ =
〈
c2

z
〉
−

〈
cz

〉2

=

〈∑N
i=1 cos2 θi

〉
+

〈∑N
i=1

∑N
i̸=j cos θi cos θj

〉

(4πDa2T)2 −

〈∑N
i=1 cos θi

〉2

(4πDa2T)2

Table 1. Uncertainty of concentration and gradient sensing

Measurement uncertainty Perfect absorber Perfect monitor Ratio absorber/monitor

Concentration:
⟨(δc)2⟩

c2
0

1
4πDac0T

(8)
3

5πDac0T
12
5

= 2.4

Gradient:
⟨(δcr⃗ )2⟩
(c0/a)2

1
4πDac0T

15
7πDac0T

60
7

≈ 8.6
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Physics of collective cell behavior

What are the fundamental limits to cellular sensing?

Can cells surpass these limits by communicating?

Concentration 
sensing (Berg & 
Purcell, 1977)

Gradient 
sensing 

Collective EGF sensing in organoids

Mugler, Levchenko, Nemenman, PNAS, 2016 
Ellison, Mugler, Brennan, et al, PNAS, 2016

left unbiased rightleft unbiased right

left unbiased rightleft unbiased right

A B

C D

  12.5

  25

30

210

60

240

90

270

120

300

150

330

180 0

  2

  4

  6

30

210

60

240

90

270

120

300

150

330

180 0

Wild type, EGF gradientWild type, EGF uniform

E P-cadherin null, disseminated cells F P-cadherin null, main organoid

  2
  4
  6
  8
  10

30

210

60

240

90

270

120

300

150

330

180 0

  5

  10

  15

30

210

60

240

90

270

120

300

150

330

180 0

Fancher, Mugler, submitted

Theory of collective sensingConc. sensing with short-range communication

Fancher & Mugler, arXiv:1603.04108

↵
µ

�

⌫

;

�

m1
m2

r1
r2

Note: 3

8
>

1

2
⇥ 1

2

correlated measurements

single 
cell

two 
cells
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Cell-cell communication

Juxtacrine signaling 
(short-range)

left unbiased rightleft unbiased right

left unbiased rightleft unbiased right

A B

C D

  12.5

  25

30

210

60

240

90

270

120

300

150

330

180 0

  2

  4

  6

30

210

60

240

90

270

120

300

150

330

180 0

Wild type, EGF gradientWild type, EGF uniform

E P-cadherin null, disseminated cells F P-cadherin null, main organoid

  2
  4
  6
  8
  10

30

210

60

240

90

270

120

300

150

330

180 0

  5

  10

  15

30

210

60

240

90

270

120

300

150

330

180 0

Gap junctions

Autocrine signaling 
(long-range)Cellular Communication 
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Concentration sensing by a single cell
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ṙ = ↵c(~0, t)� µr + ⌘r
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Conc. sensing with short-range communication

Fancher & Mugler, arXiv:1603.04108
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Conc. sensing with long-range communication

Fancher & Mugler, arXiv:1603.04108
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Glioblastoma cellular architectures are predicted
through the characterization of two-cell interactions
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To understand how pairwise cellular interactions influence cellular
architectures, we measured the levels of functional proteins as-
sociated with EGF receptor (EGFR) signaling in pairs of U87EGFR
variant III oncogene receptor cells (U87EGFRvIII) at varying cell
separations. Using a thermodynamics-derived approach we ana-
lyzed the cell-separation dependence of the signaling stability,
and identified that the stable steady state of EGFR signaling exists
when two U87EGFRvIII cells are separated by 80–100 μm. This
distance range was verified as the characteristic intercellular sep-
aration within bulk cell cultures. EGFR protein network signaling
coordination for the U87EGFRvIII system was lowest at the stable
state and most similar to isolated cell signaling. Measurements of
cultures of less tumorigenic U87PTEN cells were then used to cor-
rectly predict that stable EGFR signaling occurs for those cells at
smaller cell–cell separations. The intimate relationship between
functional protein levels and cellular architectures explains the
scattered nature of U87EGFRvIII cells relative to U87PTEN cells in
glioblastoma multiforme tumors.

GBM | surprisal analysis | cancer cell–cell signaling |
biological steady state | two-body cell–cell interaction

Pathological analysis of tumor tissues is typically led by the
analyses of cellular architectures within those tumors. Rela-

tionships between those architectures and molecular biomarkers
of disease are often poorly understood. We seek to establish such
a relationship, starting from physical principles. We take as an
example glioblastoma multiforme (GBM) cancer cells that ex-
press the EGF receptor (EGFR) variant III oncogene receptor
(EGFRvIII). Although these cells enhance tumorigenicity, in-
vasion, and other hallmarks of cancer (1, 2), they comprise only
a subpopulation of the cancer cells within an EGFRvIII+ tumor,
and their distribution is diffuse (1, 3, 4). To help understand this
diffuse cellular architecture, we developed an experimental–
theoretical methodology based on analysis of EGFR signaling in
two interacting cells. In many physical systems—from planets to
atomic solids—the interactions of an element of that system with
its surroundings can be understood within the context of two-body
interactions. This broad observation inspired our experimental ap-
proach, which was to measure EGFR-associated signaling activity
in statistically significant numbers of two EGFRvIII+ GBM cells,
as a function of intercellular separation. Our theoretical approach
was similarly inspired: it assumed that the resultant two-cell data
sets could be interpreted using thermodynamic-like considerations.
Our approach allows a determination of the stability of a

phosphoprotein signaling network in two interacting cells, and
demonstrates how that stability dictates the cell–cell distance
distribution in a bulk culture. Using this concept we determined
the most probable intercellular separation distance range within
cell populations, and the deviations thereof. The available litera-
ture suggests our conclusions can be extended to bulk tumors (1).
EGFR signaling plays an important role in motility and pro-

moting tumor growth within EGFRvIII+ GBM tumors (2, 5–8).
We thus hypothesized that a detailed examination of the EGFR
signaling pathway, within two GBM cells at different separations,

would allow a determination of a distance range that exhibited
the most stable EGFR signaling. This approach assumes that
cell–cell separations with the most stable EGFR signaling will
appear with a higher frequency within a bulk population.
Our experimental/theoretical analysis combines measurements

of functional proteins, such as phosphorylated kinases, within the
EGFR signaling pathway in isolated pairs of GBM cells, at
varying cell separations, with surprisal analysis (9–11). Here we
use surprisal analysis to determine the most balanced state of
the two cells at different distance ranges. We thereby identified
a steady-state separation distance between two U87EGFRvIII
cells of 80–100 μm. The steady-state separation of two cells was
found to correspond to the most probable distance range de-
termined through microscopy measurements of the radial dis-
tribution function (RDF) of those same cells in bulk culture. The
RDF represents the measured distributions of cell locations with
respect to each other. We then turned this approach around, and
used measurements of the RDF from a bulk culture of the less
tumorigenic U87PTEN cells [model GBM cells expressing wild-
type EGFR and the tumor suppressor phosphatase and tensin
homolog (PTEN)] to identify the most probable cell–cell sepa-
ration distance. Thereby we predict that the most stable cell–cell
pairwise signaling in U87PTEN cells occurs at smaller cell–cell
separations. Those predictions were then shown to be consistent
with two-cell, functional proteomics assays.
Our results may help explain the scattered distribution of

EGFRvIII cells and less infiltrative nature of U87PTEN cells;
furthermore, they point to an intimate relationship between cel-
lular signaling activity, distance dependent cell–cell interactions,

Significance

Microscopic analysis of cellular architectures within a diseased
tissue often provides an independent assay relative to mea-
surements of molecular biomarkers from that same tissue. Both
methods may point to the same disease state, but the relation-
ship between the two is often not clear. We explore a connec-
tion by investigating how growth factor-driven protein signaling
depends upon the distance separating pairs of cancer cells. A
thermodynamic-derived theory identifies the intercellular sepa-
ration that corresponds to the steady state of the signaling. That
length scale is found to be the dominant cell separation distance
in bulk tissue culture. The approach is tested in one cell line and
validated in another, and may provide insight into the diffusive
nature of certain brain cancer phenotypes.
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and cell culture architectures. The methodology demonstrated
here shows how a thermodynamic-like approach, coupled with
quantitative functional protein measurements, can provide in-
formation about the stability of a cellular system. This approach
should be broadly applicable.

Results
Experimental Measurements. As an input for surprisal analysis, we
used data obtained from the recently reported version (12) of the
single-cell barcode chip (SCBC) platform (13) (Fig. 1A). This
particular SCBC is comprised of ∼8,700 0.2-nL-volume micro-
chambers molded into a polydimethylsiloxane (PDMS) elasto-
mer slab. That slab is bonded to a glass slide that has been
patterned so that each microchamber is equipped with a full copy
of a six-element antibody array. Cells are loaded onto the chip
and isolated within the microchambers for an incubation period
of 6 h. During that time, the cells adhere to the collagen-coated
PDMS surface, and may secrete proteins, two of which (VEGF
and IL-6) are captured on designated spots on the antibody ar-
ray. After incubation, lysate solution containing phosphatase and
protease inhibitors is diffused into each microchamber (Fig. 1C),
spilling the cell contents and permitting additional phospho (p)
proteins (pAkt, pS6k, pERK, and pEGFR) associated with EGFR
signaling to be captured onto designated spots within the antibody

array. The microchambers are then flushed, the molded PDMS
layer is peeled from the barcoded glass slide, and the protein
assays are developed using fluorophore-labeled detection anti-
bodies (Table S1 contains all biomolecular reagents used). The
fluorescence from the developed antibody array is digitized using
custom algorithms coupled with a GenePix array scanner. That
digitized data may be converted into quantitative (protein copy
number) assays using calibration curves measured on a similar
SCBC platform. The final data are loaded into a table. Each row
of the table correlates to a single microchamber address. The
row entries contain the numbers and locations of the cells at that
address, and the levels of each of the six assayed proteins. Such
assays are accurate to ∼10% measurement error (13). A data set
contains ∼1,000 zero-cell assays (used for background measure-
ments), ∼2,000 one-cell assays, and >500 two-cell assays (Fig. 1B).
The two-cell assays are binned according to ranges of cell–cell
separation.
Fig. 2A shows the copy numbers of pEGFR vs. U87EGFRvIII

cell separation (smoothed proteomic data, red curve). The data
were binned into six intercellular distance ranges (Fig. 2A, blue
dots) with at least 45 (45 ≤ n ≤ 155) cell pairs for each range.
Mean values of copy number distributions for each protein i (Fig.
2A, blue dots) were calculated for each range. Corresponding
data for the other five assayed proteins is provided (Fig. S1).

Fig. 1. Measurement of pairwise interactions using the SCBC platform. (A)
The SCBC is comprised of clamped elastomer and glass layers. (B) A fluo-
rescence image of two cells within an SCBC microchamber permits a mea-
surement of the center-to-center separation (r) of the cells. A drawn outline of
the antibody array is shown. (Lower) These three images (from a GenePix array
scanner) show the developed antibody arrays from microchambers that con-
tained zero, one, and two cells. The central (green) array spot is an alignment
marker; the red spots are the protein assays. (C) SCBC operation steps. Cells are
incubated on the collagen-coated microchamber surface for 6 h, during which
time secreted proteins are captured by the specific antibodies on the barcode
antibody array. Lysis buffer is introduced by varying the clamp pressure to
allow communication between the microchamber and a surrounding fluid
reservoir. The SCBC is dissembled, and the barcoded glass slide is de-
veloped using a mixture of fluorophore-labeled secondary antibodies.
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Fig. 2. Effect of cell–cell separation on the stability of EGFR signaling. (A)
SCBC data showing the measured level of pEGFR as a function of cell sepa-
ration distance from 500 pairs (×2) of U87EGFRvIII cells. The data were
binned into six different ranges (blue dots). The smooth red curve was been
generated in KaleidaGraph software by applying a Stineman function to the
SCBC data. Blue dots represent mean values of protein copy numbers at
every distance range calculated from protein distributions. Values are mean ±
SEM. (B) Surprisal analysis yields the extent of participation of each assayed
protein in the biological processes described by constraints 0 (the steady state), 1,
and 2. (C) The distance dependent amplitudes of the constraints α= 1 and α=2,
represented by λαðrÞ, reflect the extent of the deviation of the measured EGFR
network from the steady state as a function of distance (in micrometers). The
error bars for λαðrÞ were calculated by propagating errors associated with the
mean values of measured proteins as a function of distance (SI Text, De-
termination of the Errors for the Calculated Parameters Obtained from Sur-
prisal Analysis).
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distribution function. At this point, cells have had time to migrate
(18) and are adherent. One might ask why the cells would migrate
in the bulk culture, whereas they are not observed to move on the
SCBC platform. A likely answer is that the cell–cell interactions
are additive. For example, consider two cells that are interacting
at a distance smaller than the steady-state separation. The re-
sultant force that tends to push those cells toward the steady-state
distance might not be sufficient to overcome any energy barrier to
motion (i.e., a static friction) that exists for the adherent GBM
cells. When multiple cells are interacting, the forces between pairs
of cells are additive, and thus are more able to overcome such
a barrier. The implication is that the α= 1 constraint, though of a
relatively small amplitude for two interacting cells, can exert a
significant influence in a bulk culture or tissue.
Using custom algorithms, we extracted RDFs from microscopy

measurements of ∼10,000 cell pairs (Fig. 3B). The RDF was
computed from the bulk cell-to-cell distance distribution divided
by a random probability distribution obtained from a Monte Carlo
simulation. The RDF was then used to calculate the chemical
potential of cell–cell interactions uðrÞ by taking the natural loga-
rithm of the RDF (19) (Fig. 3C and SI Text, Cell–Cell Distance
Distribution Measurements and Calculations of u(r) Function). The
main finding of Fig. 3 A and C is that the minimum of the DPE
function (extracted from the SCBC cell pair data analysis) corre-
sponds to the minimum of the uðrÞ function. The low chemical
potential arising from cell–cell interactions (meaning a minimal
deviation from the steady state) at 80–100 μm (Fig. 3A) predicts
a higher probability for finding U87EGFRvIII cells at this distance
range in bulk culture. U87EGFRvIII cells seeded at a lower initial
density achieved a similar distance distribution after 72 h (Fig.
S4C). Even after long culture times, U87EGFRvIII cells do not
form dense 3D colonies (Fig. S3, Upper Right); we hypothesize that
this is attributable to the higher stability of these cells when they
are interacting with other cells at larger separations.

Bulk Distributions Indicate Pairwise Interactions in U87PTEN Cells.We
hypothesized that a measured RDF in cultured cells could be
used to predict a cellular separation with the most stable sig-
naling. As a test, we used U87PTEN GBM cells, which have WT

expression of EGFR and PTEN, and subsequently decreased
activity of EGFR downstream proteins (20, 21). We measured
the RDF of U87PTEN cells within bulk cultures, using similar
considerations as for U87EGFRvIII. That data were converted
into potential energy [uðrÞ] as a function of distance (Fig. 4A),
and suggests that the EGFR signaling activity in U87PTEN cells
would have the smallest deviation from the steady state at small
(20–30 μm) intercellular separations.
We next performed two-cell SCBC experiments, assaying for

the same proteins. The SCBC data were divided into nine dis-
tance ranges (Fig. S5E). Using surprisal analysis (Table S4 and
Fig. S5 C and D), the DPE function was calculated (Fig. 4B)
similar to the case for the U87EGFRvIII cells. This function
confirmed that deviation of EGFR signaling activity from the
steady state at small cell–cell separation distances was essentially
zero; this is reflected in the 3D dense colonies that form within
cultures of these cells following 144-h incubation (Fig. S3,
Lower). The DPE calculation detects relatively smaller devia-
tions from the steady state at larger intercellular separations that
are not reflected in the uðrÞ plot. As a general rule, deviations
from the U87PTEN steady state are significantly lower in am-
plitude than for the more aggressive U87EGFRvIII cells.
The SCBC permits two interesting additional comparisons.

First, the levels of the proteins that were assayed from isolated
U87EGFRvIII single cells (Fig. 5A, red boxes) were comparable
to those levels observed near the steady-state distance range for
the two-cell experiments; this is indicated by the overlap between
the red box and the steady-state expression levels (Fig. 5A). In
addition, the EGFR signaling pathway coordination, as esti-
mated from protein–protein correlation networks extracted from
the one- and two-cell data (Fig. 5B) (13) were also compared.
For those two-cell systems that lay close to the steady state (Fig.
5B, range 60–110 μm), the signaling coordination is at a mini-
mum, and comes closest to matching the one-cell network. These
comparisons further suggest that the steady state of two
U87EGFRvIII cells is near to that of an isolated single cell.
The U87PTEN cells, which exhibited significantly smaller

variations in signaling as a function of intercellular separation,
did not exhibit such clear trends (Fig. S6).

Discussion
GBM tumors are architecturally heterogeneous, possessing func-
tional subdomains that can differentially express wtEGFR and
EGFRvIII receptors (1, 3, 4). Several studies have demonstrated
the more tumorigenic nature of the ERFRvIII protein, resulting

-0 .5

0

0 .5

1

0 30 60 90 120

2

3

4x10

10
8 
µm

88 µm

0 3 0 60 9 0 1 20

-2

D
P

E
 /k

T
0

B CA
1.5

u(
r)

/k
T

1
F igure-1 ( Heath )

µm) Separation distance ( µm) Separation distance (

Fig. 3. Predicting spatial distributions of U87EGFRvIII cells in bulk cell cul-
ture. (A) The DPE function provides a measurement of the deviation of two
interacting cells from the steady state; it has a value near zero at midrange
and a secondary minimum near 40 μm. The error bars were calculated by
propagating errors associated with the mean values of measured proteins as
a function of distance (SI Text, Determination of the Errors for the Calcu-
lated Parameters Obtained from Surprisal Analysis). (B) Using custom algo-
rithms, optical micrographs of U87EGFRvIII cells in bulk culture were
digitized and analyzed so that all cell pairs, up to a separation distance of
200 μm were measured, for ∼10,000 cell pairs. The resultant histogram
provides a probability for finding a pair of the cells at a certain distance. The
obtained probability was divided by a random probability of cell–cell dis-
tance distributions. This result was used as an input to calculate RDF. (C) The
potential energy uðrÞ of cell–cell interactions was calculated from the RDF.
Values are mean ± SEM (n = 5). In every biological replicate 900≤N≤ 1,900
cell pairs were found that had a separation distance of ≤200 μm and were
used to calculate RDF and uðrÞ functions.

-0 .5

0 .5

u(
r)

/kT

1

-1

0

1

1.5 x10

0 30 60 90 120

0.5D
PE

 /k
T

0

-2

0 30 60 90 120
µm) Separation distance ( µm) Separation distance (

A B

Fig. 4. Bulk distributions indicate pairwise interactions in U87PTEN cells.
(A) The potential energy (uðrÞ) describing U87PTEN cell–cell interactions was
calculated from the measured RDF from the cells in bulk cell culture, at a cell
density similar to that of an SCBC two-cell assay. Values are mean ± SEM (n = 5).
Every biological replicate included 1,000≤N≤ 1,600 cell–cell distances. (B) The
DPE function for the U87PTEN cells, as estimated from analysis of SCBC data.

6524 | www.pnas.org/cgi/doi/10.1073/pnas.1404462111 Kravchenko-Balasha et al.

distribution function. At this point, cells have had time to migrate
(18) and are adherent. One might ask why the cells would migrate
in the bulk culture, whereas they are not observed to move on the
SCBC platform. A likely answer is that the cell–cell interactions
are additive. For example, consider two cells that are interacting
at a distance smaller than the steady-state separation. The re-
sultant force that tends to push those cells toward the steady-state
distance might not be sufficient to overcome any energy barrier to
motion (i.e., a static friction) that exists for the adherent GBM
cells. When multiple cells are interacting, the forces between pairs
of cells are additive, and thus are more able to overcome such
a barrier. The implication is that the α= 1 constraint, though of a
relatively small amplitude for two interacting cells, can exert a
significant influence in a bulk culture or tissue.
Using custom algorithms, we extracted RDFs from microscopy

measurements of ∼10,000 cell pairs (Fig. 3B). The RDF was
computed from the bulk cell-to-cell distance distribution divided
by a random probability distribution obtained from a Monte Carlo
simulation. The RDF was then used to calculate the chemical
potential of cell–cell interactions uðrÞ by taking the natural loga-
rithm of the RDF (19) (Fig. 3C and SI Text, Cell–Cell Distance
Distribution Measurements and Calculations of u(r) Function). The
main finding of Fig. 3 A and C is that the minimum of the DPE
function (extracted from the SCBC cell pair data analysis) corre-
sponds to the minimum of the uðrÞ function. The low chemical
potential arising from cell–cell interactions (meaning a minimal
deviation from the steady state) at 80–100 μm (Fig. 3A) predicts
a higher probability for finding U87EGFRvIII cells at this distance
range in bulk culture. U87EGFRvIII cells seeded at a lower initial
density achieved a similar distance distribution after 72 h (Fig.
S4C). Even after long culture times, U87EGFRvIII cells do not
form dense 3D colonies (Fig. S3, Upper Right); we hypothesize that
this is attributable to the higher stability of these cells when they
are interacting with other cells at larger separations.

Bulk Distributions Indicate Pairwise Interactions in U87PTEN Cells.We
hypothesized that a measured RDF in cultured cells could be
used to predict a cellular separation with the most stable sig-
naling. As a test, we used U87PTEN GBM cells, which have WT

expression of EGFR and PTEN, and subsequently decreased
activity of EGFR downstream proteins (20, 21). We measured
the RDF of U87PTEN cells within bulk cultures, using similar
considerations as for U87EGFRvIII. That data were converted
into potential energy [uðrÞ] as a function of distance (Fig. 4A),
and suggests that the EGFR signaling activity in U87PTEN cells
would have the smallest deviation from the steady state at small
(20–30 μm) intercellular separations.
We next performed two-cell SCBC experiments, assaying for

the same proteins. The SCBC data were divided into nine dis-
tance ranges (Fig. S5E). Using surprisal analysis (Table S4 and
Fig. S5 C and D), the DPE function was calculated (Fig. 4B)
similar to the case for the U87EGFRvIII cells. This function
confirmed that deviation of EGFR signaling activity from the
steady state at small cell–cell separation distances was essentially
zero; this is reflected in the 3D dense colonies that form within
cultures of these cells following 144-h incubation (Fig. S3,
Lower). The DPE calculation detects relatively smaller devia-
tions from the steady state at larger intercellular separations that
are not reflected in the uðrÞ plot. As a general rule, deviations
from the U87PTEN steady state are significantly lower in am-
plitude than for the more aggressive U87EGFRvIII cells.
The SCBC permits two interesting additional comparisons.

First, the levels of the proteins that were assayed from isolated
U87EGFRvIII single cells (Fig. 5A, red boxes) were comparable
to those levels observed near the steady-state distance range for
the two-cell experiments; this is indicated by the overlap between
the red box and the steady-state expression levels (Fig. 5A). In
addition, the EGFR signaling pathway coordination, as esti-
mated from protein–protein correlation networks extracted from
the one- and two-cell data (Fig. 5B) (13) were also compared.
For those two-cell systems that lay close to the steady state (Fig.
5B, range 60–110 μm), the signaling coordination is at a mini-
mum, and comes closest to matching the one-cell network. These
comparisons further suggest that the steady state of two
U87EGFRvIII cells is near to that of an isolated single cell.
The U87PTEN cells, which exhibited significantly smaller

variations in signaling as a function of intercellular separation,
did not exhibit such clear trends (Fig. S6).

Discussion
GBM tumors are architecturally heterogeneous, possessing func-
tional subdomains that can differentially express wtEGFR and
EGFRvIII receptors (1, 3, 4). Several studies have demonstrated
the more tumorigenic nature of the ERFRvIII protein, resulting
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Glioblastoma cellular architectures are predicted
through the characterization of two-cell interactions
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To understand how pairwise cellular interactions influence cellular
architectures, we measured the levels of functional proteins as-
sociated with EGF receptor (EGFR) signaling in pairs of U87EGFR
variant III oncogene receptor cells (U87EGFRvIII) at varying cell
separations. Using a thermodynamics-derived approach we ana-
lyzed the cell-separation dependence of the signaling stability,
and identified that the stable steady state of EGFR signaling exists
when two U87EGFRvIII cells are separated by 80–100 μm. This
distance range was verified as the characteristic intercellular sep-
aration within bulk cell cultures. EGFR protein network signaling
coordination for the U87EGFRvIII system was lowest at the stable
state and most similar to isolated cell signaling. Measurements of
cultures of less tumorigenic U87PTEN cells were then used to cor-
rectly predict that stable EGFR signaling occurs for those cells at
smaller cell–cell separations. The intimate relationship between
functional protein levels and cellular architectures explains the
scattered nature of U87EGFRvIII cells relative to U87PTEN cells in
glioblastoma multiforme tumors.

GBM | surprisal analysis | cancer cell–cell signaling |
biological steady state | two-body cell–cell interaction

Pathological analysis of tumor tissues is typically led by the
analyses of cellular architectures within those tumors. Rela-

tionships between those architectures and molecular biomarkers
of disease are often poorly understood. We seek to establish such
a relationship, starting from physical principles. We take as an
example glioblastoma multiforme (GBM) cancer cells that ex-
press the EGF receptor (EGFR) variant III oncogene receptor
(EGFRvIII). Although these cells enhance tumorigenicity, in-
vasion, and other hallmarks of cancer (1, 2), they comprise only
a subpopulation of the cancer cells within an EGFRvIII+ tumor,
and their distribution is diffuse (1, 3, 4). To help understand this
diffuse cellular architecture, we developed an experimental–
theoretical methodology based on analysis of EGFR signaling in
two interacting cells. In many physical systems—from planets to
atomic solids—the interactions of an element of that system with
its surroundings can be understood within the context of two-body
interactions. This broad observation inspired our experimental ap-
proach, which was to measure EGFR-associated signaling activity
in statistically significant numbers of two EGFRvIII+ GBM cells,
as a function of intercellular separation. Our theoretical approach
was similarly inspired: it assumed that the resultant two-cell data
sets could be interpreted using thermodynamic-like considerations.
Our approach allows a determination of the stability of a

phosphoprotein signaling network in two interacting cells, and
demonstrates how that stability dictates the cell–cell distance
distribution in a bulk culture. Using this concept we determined
the most probable intercellular separation distance range within
cell populations, and the deviations thereof. The available litera-
ture suggests our conclusions can be extended to bulk tumors (1).
EGFR signaling plays an important role in motility and pro-

moting tumor growth within EGFRvIII+ GBM tumors (2, 5–8).
We thus hypothesized that a detailed examination of the EGFR
signaling pathway, within two GBM cells at different separations,

would allow a determination of a distance range that exhibited
the most stable EGFR signaling. This approach assumes that
cell–cell separations with the most stable EGFR signaling will
appear with a higher frequency within a bulk population.
Our experimental/theoretical analysis combines measurements

of functional proteins, such as phosphorylated kinases, within the
EGFR signaling pathway in isolated pairs of GBM cells, at
varying cell separations, with surprisal analysis (9–11). Here we
use surprisal analysis to determine the most balanced state of
the two cells at different distance ranges. We thereby identified
a steady-state separation distance between two U87EGFRvIII
cells of 80–100 μm. The steady-state separation of two cells was
found to correspond to the most probable distance range de-
termined through microscopy measurements of the radial dis-
tribution function (RDF) of those same cells in bulk culture. The
RDF represents the measured distributions of cell locations with
respect to each other. We then turned this approach around, and
used measurements of the RDF from a bulk culture of the less
tumorigenic U87PTEN cells [model GBM cells expressing wild-
type EGFR and the tumor suppressor phosphatase and tensin
homolog (PTEN)] to identify the most probable cell–cell sepa-
ration distance. Thereby we predict that the most stable cell–cell
pairwise signaling in U87PTEN cells occurs at smaller cell–cell
separations. Those predictions were then shown to be consistent
with two-cell, functional proteomics assays.
Our results may help explain the scattered distribution of

EGFRvIII cells and less infiltrative nature of U87PTEN cells;
furthermore, they point to an intimate relationship between cel-
lular signaling activity, distance dependent cell–cell interactions,

Significance

Microscopic analysis of cellular architectures within a diseased
tissue often provides an independent assay relative to mea-
surements of molecular biomarkers from that same tissue. Both
methods may point to the same disease state, but the relation-
ship between the two is often not clear. We explore a connec-
tion by investigating how growth factor-driven protein signaling
depends upon the distance separating pairs of cancer cells. A
thermodynamic-derived theory identifies the intercellular sepa-
ration that corresponds to the steady state of the signaling. That
length scale is found to be the dominant cell separation distance
in bulk tissue culture. The approach is tested in one cell line and
validated in another, and may provide insight into the diffusive
nature of certain brain cancer phenotypes.
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Collective ATP sensing in fibroblasts
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that oscillatory events are at least five times less likely to occur for
the MDA-MB-231 cells.
Having established that the presence of cancer cells reduces

the degree of cell–cell communication in the monolayer, we now
vary the fraction of cancer cells and measure the oscillation
propensity of the remaining fibroblasts. Fig. 5D shows the non-
oscillating fraction of fibroblasts FN (blue bars) as a function of
the cancer cell fraction FC for a typical experiment at fixed cell
density (ρT = 1,200± 200 cells per 1 mm2). We see that FN sig-
nificantly increases with FC. We also see that FN for all cells
(both fibroblasts and cancer cells) (red bars in Fig. 5D) signifi-
cantly increases with FC and that, as expected, FN is larger for all
cells than for just fibroblasts. These findings imply that reduced
cell–cell communication decreases the propensity for calcium
oscillations, which is consistent with the effects of varying cell
density (Fig. 4B). Finally, we also investigate the effect of cancer
cells on the entropy of the ISI distribution. As shown in SI Ap-
pendix, section 2, HISI is higher for cells that are surrounded by a
large number of cancer cells and lower for cells with pure fi-
broblast neighbors. In the latter case, HISI also increases as the
number of nearest neighbors decreases. These findings imply
that reduced cell–cell communication increases the entropy of
the ISI values, even at the local level of a cell’s microenviron-
ment, which is consistent with the effects seen in Fig. 4D. Taken
together, we conclude that the calcium dynamics of individual
cells is strongly regulated by the degree of gap junction com-
munication inside the cell monolayer.

Discussion
We have characterized the collective calcium dynamics of mul-
ticellular networks with varying degrees of cell–cell communi-
cation when they respond to extracellular ATP. We have found
that increasing the ATP stimulus increases the propensity for
cells to exhibit calcium oscillations, which is expected at the
single-cell level. However, we have also found that increasing the
cell density alone, while keeping the stimulus fixed, has a similar
effect, revealing a purely collective component to the sensory
response. Modeling suggests that this effect is caused by an in-
creased degree of molecular communication between cells. In
line with this prediction, we have found that increasing the
fraction of cancer cells in the monolayer reduces the oscillation
propensity, because cancer cells act as defects in the communi-
cation network. Based on these results, we conclude that the
collective sensory response, in which nonlinear signaling dy-
namics is coupled with strong intrinsic and extrinsic noise, en-
codes both stimulus strength and degree of communication.
Our results suggest that the calcium response to extracellular

ATP encodes multiplexed information under physiological con-
ditions. Typical plasma and pericellular concentrations of ATP
in animals and human have been reported to range from sub-
micromolar to tens of micromolar (30–32), whereas hundreds of
micromolar have been associated with tumor because of the
hypoxia microenvironment (33). The concentration range of
ATP in Fig. 4B is associated with several physiological phe-
nomena, including immunomodulation (34, 35), traumatic shock
(36), and platelet activation (37). Within this range, our results
show that calcium dynamics encodes both stimuli strength in the
magnitude of intracellular calcium concentration (Fig. 1B) and
cell density in the propensity of calcium oscillation (Fig. 4B).
Such multiplexing has been shown to be possible with simple
biochemical networks (38), and it is thought to underlie the
ability of single networks to respond with specificity to multiple
inputs, such as neuronal growth factor and EGF in the rat PC-12
system (39). A possible reason for multiplexing is that it is ben-
eficial for the responses to each input to be dependent on each
other (40), which in our case, suggests a benefit for a collective
component to the ATP sensory response. The ways in which
dynamic information is stored in and extracted from cellular
signals are a topic of ongoing research (41, 42).
Recent experiments have put our results in the context of a

unique paradigm of cell signaling: cells may decode information
from the dynamics and not just the magnitude of signaling
molecules (43). For instance, UV and γ-radiation differentially
trigger nonoscillatory and oscillatory p53 dynamics (44). Simi-
larly, when endothelial cells are stimulated by VEGF, non-
oscillatory and oscillatory calcium dynamics leads to migration
and proliferation, respectively (45). In light of these develop-
ments, our results suggest that cell density, via gap junctional
communication and nonlinear signaling dynamics, can impact
cellular function, similar to so-called dynamical quorum sensing
(46–48).
Our results suggest that the dependence of the calcium re-

sponse on both sensory and collective parameters persists, de-
spite significant cell-to-cell variability. Certain measures are
robust to variability, such as the oscillation propensity and the
entropy of the ISI distribution, whereas others are not, such as
spatial correlations in the ISI and its dependence on the ATP
input (frequency encoding). This result implies that our main
finding of communication-dependent sensing is generic, because
it persists despite large variability, but that traditional measures
of information processing, such as frequency encoding, may have
to be rethought in contexts where cell-to-cell variability is pro-
nounced. It is becoming increasingly understood that variability
is common in cell populations, and recent examples suggest that
it may even be beneficial. For example, recent studies in a related
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Fig. 5. Effects of cancer cell defects on collective response. (A) Typical
fluorescence intensity profiles showing the calcium dynamics on the single-
cell level, where basal-level intensity has been subtracted. For each cell,
basal-level intensity is estimated by averaging 100 s of its fluorescent in-
tensity before ATP arrival (ATP concentration = 50 μM; ρT = 2,400 cells per
1 mm2; FC = 12%). (B) Fluorescence recovery after photobleaching experi-
ments confirm that MDA-MB-231 cells have weaker gap junction commu-
nication compared with NIH 3T3 cells (error bars: SEMs for n> 100). **P <
0.01. More details are in SI Appendix, section 1. (C) Spatial map of average ISI
of each individual cell. ATP concentration is 50 μM. Black, nonoscillating cell;
circle, MDA-MB-231 cell. (D) When stimulated by an intermediate range of
ATP concentrations (10–100 μM), the fraction of nonoscillating cells FN in-
creases with increased cancer fraction FC at fixed total cell density
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Our calculations are done on a square lattice, where each lattice site is either empty

or contains one cell, and therefore each cell can have up to four neighbors with which to

communicate. Density is varied by changing the number of empty lattice sites. For each

chosen density, we sample over individual realizations, in which cell locations are assigned

randomly. Thus, the statistics encompass many possible spatial distributions of cells for

each density.
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Experimental system
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Error in gradient sensing:

� ⇠ a3cp
TDac

Gradient sensing: Berg-Purcell estimate

a

g

n1 n2

�n̄ ⇠ a3�c = a3g(Na)

Mugler, Levchenko, Nemenman, PNAS, 2016

⇠ Na

�g

g
=

�

�n̄
⇠ 1

gNa

r
c

TDa



Compartments need 
to communicate to 

integrate information.

Mugler, Levchenko, Nemenman, PNAS, 2016

Gradient sensing: Berg-Purcell estimate



Gradient sensing w/ short-range communication
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Beyond a certain size, 
there is no further benefit
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n0 = 1
n0 = 3
n0 = 10

Communication length scale:                         cells2.9 < n0 < 4.2

Ellison, Mugler, Brennan, et al, PNAS, 2016
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What is the communication molecule?
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Gap-junction blocker: 
50 nM Endothelin-I

Same for: 
• 50 μM Carbenoxolone 
• 50 μM Flufenamic acid 
• 0.5 mM Octanol
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Calcium depletion: 
100 nM Thapsigargin
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Collective cell migration

Cellular Potts model:

U =
X

hx,x0i

J
�(x),�(x0) + �

X

i

�A2
i

100 μm

Varennes, Han, Mugler, Biophys J, 2016

Current work w/ Bumsoo Han, Purdue:

5

Initial distance depends on
cell concentration and cell seeding area Æ assume it has 
uniform distribution & no migration behavior without chemical booster

Cell counting

~300 cells/mm2 ~30 cells/mm2

Previous work_Cell concentration

Chemical gradient for migration (TGF-β)
Diffusion behavior

?

Culture medium
Culture medium 
w/ Dextran

③ ②

Collagen = 3mg/ml

T=37°C

Dextran 1µM
Chamber volume : 250µl

9

mm
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Summary

• Simple models provide powerful bounds on biological 
information processing 

• Communication allows collective systems to 
outperform single cells 

• Long-range communication can reduce measurement 
correlations, leading to optimal cell separations 

• Communication is ultimately imperfect, which 
fundamentally limits sensory precision
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