Nanometer Scale Patterning and Processing Spring 2016

Lecture 40 Nanoimprint Lithography (NIL) – Other NIL Approaches

• Section 9

OTHER NIL APPROACHES

Emboss Metal at Nano-scale

- Nanoimprint Lithography
 - Transfers mold patterns onto the sample by mechanical deformation
 - Cost effective, repeatable and has high resolution
- Imprint metal films at nano-scale ???

Macroscale

Metal Embossing: Use high pressure and temperature

Alternative Direct Metal Patterning Methods

- Emboss metal at high temperature and high pressure
 - Temperature (≥ 400 °C). Pressure (≥ 300 MPa)
- Melt metal by laser irradiation and then form in quartz mold
- Direct imprint porous films or metallic nanoparticles
 - Not continuous film

We want to develop a method that uses only <u>conventional conditions</u> (tools), yields <u>high</u> <u>quality pattern</u> and can be <u>widely applicable</u> in research

Buzzi, S. et al. *Appl. Phys. Lett.* 2009, *94*.

2μm Ryckman, J. D. et al, *Nano Lett.* 2011, *11*, 1857

Resistless Nanoimprint In Metal (RNIM)

Varghese, L. T.⁺, Fan, L.⁺, et al (2013), *Resistless Nanoimprinting in Metal for Plasmonic Nanostructures.* Small. doi: 10.1002/smll.201300168

RNIM of Different Shapes

- Silver (Ag) and gold (Au) are ideal candidates
 - Ductile and malleable \rightarrow Easy to deform
 - High conductivity and plasmonic resonance lies in visible wavelengths Si mold

Gratings of Different Sizes: Mold

Gratings of Different Sizes: Ag

Sub-20 nm & 3D Pattern

UNIVER

Extraordinary Optical Transmission (EOT)

EOT produces enhanced transmission of light through subwavelength metal apertures via surface plasmon interaction

5 µm

C. Genet and T. W. Ebbesen, "Light in tiny holes," Nature 445, 39(2007).

RNIM Application: EOT

- Our RNIM process can pattern metal directly on insulating substrates
 - No charging issues

SEM

Large area patterns can be obtained in one step

ECE 695 Nanometer Scale Patterning and Processing

Optical Transmission Microscope

Each pixel

Images Through Tiny Holes

Laser Shock Imprinting (LSI)

Importance of Strain Rate

Unique Results

- A: Solid pyramids with sharp tips
- B: "Fish-net" structures for metamaterials
- C: High-aspectratio (heigh:width ~3) metal grating
- D: 3D "nanogears"
- All are difficult (or impossible) to achieve with other methods

V-grooves and Smooth Edges

- V-grooves: much faster than using FIB
- No metal pile-up
- 3D patterning in one-step

Patterning of Hard Metal (Titanium)

- Mohs Hardness: 6.0
 - Gold, Silver and Copper: 2-3
- Still smaller than Si hardness (7.0)
- ECE 695 Nanometer Scale Patterning and Processing

Application to Graphene/Plasmonic Structures

H. Gao et. al, Science, vol. 346, pp. 1352-1356,

Electric field assisted NIL (EFAN)

Principle of EFAN: a voltage is applied between the conductive layers on the mold and the substrate, generating an electrostatic force to press the mold into the resist layer.

EFAN process flow

A more accurate calculation

electric field.

Propagation of contact area and imprint results

Room temperature ("thermal") NIL

RT-NIL process does not require a resist thermal cycle when pressing a mold onto the resist.

Use special material, such as hydrogen silsequioxane (HSQ), or ultrahigh pressure.

UNIVER

Room temperature ("thermal") NIL

Pre-baking is important:

- HSQ has a high viscosity without prebaking.
- The effect of prebaking HSQ is to remove the solvent init.
- The hardness of HSQ increases at around 150°C (so don't bake at higher T).

FIG. 5. HSQ replicated patterns with 100 nm linewidth after postbaking. (a) No postbaking and (b) baking temperature of 150 °C.

"Nanoimprint and nanocontact technologies using hydrogen silsequioxane", JVST B, 2005

NIL results into HSQ at RT

(3) RIE(CHF₃) of the HSQ recessed area

(4) RIE(O₂) of the AZ bottom layer

FIG. 8. SEM micrograph of a 100 nm linewidth, 1-µm-high bilay

FIG. 8. SEM micrograph of a 100 nm linewidth, 1- μ m-high bilayer structure after O₂ RIE.

Etch rate ratio for AZ photoresist to HSQ (like SiO_2) is >100.

FIG. 6. Schematic of the RT-NIL process where a bilayer of HSQ (top layer) ning and Processing and AZ photoresist (bottom layer) is used.

Imprint by inking

Bao...Guo, "Polymer inking as a micro- and nanopatterning technique", J. Vac. Sci. Tech. B, 2003, 21, 2749 ECE 695 Nanometer Scale Patterning and Processing