Nanometer Scale Patterning and Processing Spring 2016

Lecture 43 Advanced Lithography, Part 3

Directed Self-Assembly (DSA)

- 1. Di-block copolymer self assembly overview.
- 2. Guided (directed, aligned) self assembly.
- 3. Block copolymer lithography.

Block Copolymers

1

2

3

4 Block copolymers

5 Graft copolymers

styrene-butadiene-styrene (SBS, or PS-PB) block copolymer

- Microphase separate
 - Poly-styrene block forms spheres, but are linked by short butadien chains http://en.wikipedia.org/wiki/Copolymer
 - ECE 695 Nanometer Scale Patterning and Processing

Typical self assembly behavior for linear block copolymers

Typical self assembly behavior for linear block copolymers

Nature of patterns	Spheres (SPH) (3D)	Cylinders (CYL) (2D)	Double gyroid (DG) (3D)	Double diamond (DD) (3D)	Lamellae (LAM) (1D)
Space group	Im3m	p6mm	Ia3d	Pn3m	pm
Blue domains: A block					
Volume fraction of A block	0-21%	21-33%	33	3-37%	37-50%

Block copolymer thin films

- Film applied by drop casting, dip coating, and spin coating.
- Film is then treated to increase the degree of ordering.
- Such as annealing above the order-disorder transition temperature for several days.
 - To increase the speed, anneal at the presence of solvent vapor (toluene...) to swell the film and make the polymer more mobile.
- How to induce alignment
 - directional solidification strategy, such as using a temperature gradient
 - Annealing film in the presence of a gradient in solvent vapor can have similar effect. (see SEM image).

Film ordered by controlled solvent evaporation.

Advanced Material, 16, 226 (2004)

Synthesis: anionic living polymerization

Self-assembly of PS-PB di-block copolymer

PS: polystyrene PB: polybutadiene

1,3-butadiene

The most attractive feature of block copolymer self assembly is the extremely high resolution, easily get features down to 10nm.

TEM micrographs of polystyrene-polybutadiene diblock copolymer film masks (a,c) and lithographically patterned silicon nitride (b,d). ECE 695 Nanometer Scale Patterning and Processing

Block copolymer thin films: effect of substrate wetting

Block copolymer self assembly

- 1. Di-block copolymer self assembly overview.
- 2. Guided (directed, aligned) self assembly.
- 3. Block copolymer lithography.

Guided block copolymer self assembly for long range ordering and periodicity

Micro-phase separated block copolymer can be directed/aligned by:

- Electric field
- Shearing force
- Surface control of wettability
- Chemical pattern on surface
- Nano-structured surface
- Spatial confinement by surface relief pattern in substrate and mold
- Void in a range of porous host

Alignment by pre-patterning the substrate

Spherical domains assembled from PS–PFS (polystyrenepolyferrocenyldimethylsilane) block copolymer inside patterned SiO₂ grooves.

The 1.5 wt.% PS-PFS block copolymer in toluene solution was spin-coated onto the grooved substrate and then annealed at 140°C for 48h to obtain a monolayer of spherical PFS domains in a PS matrix within the substrate grooves.

Ross, "Templated self-assembly of block copolymers: effect of substrate topography", Adv. Mater. 15, 1599–1602 (2003).

Alignment by shear force (here for silicon nano-wire fabrication)

Alignment by shear force (for silicon nano-wire fabrication)

Tapping mode atomic force microscopy (TM-AFM) phase images of PS–PHMA thin films on top of an α -Si layer on a fused silica substrate:

- a) Quiescently annealed
- b) Shear aligned.

Glassy PS cylinders are shown as light in a dark rubbery PHMA matrix.

Polystyrene-b-poly(n-hexyl methacrylate) (PS–PHMA) diblock copolymer with a molar mass of 21 and 64 kg/mol for the respective blocks.

Chaikin, "Silicon nanowire grid polarizer for very deep ultraviolet fabricated from a shear-aligned diblock copolymer template", Optics letters, 32(21), 3125-3127 (2007).

Templated self-assembly of block copolymers

Polymerization of block-copolymers on chemically pre-patterned substrates

Directed assembly of block copolymer blends into non-regular device oriented structure

Directed assembly on chemically patterned surface

Block copolymer materials that naturally form simple periodic structures were directed to assemble into non-regular device oriented patterns (here an elbow) on chemically nano-patterned substrates.

Mark P. Stoykovich, Marcus Müller, Sang Ouk Kim, Harun H. Solak, Paul F. Nealey, Science, 308, 1442-1446 (2005).

Directed assembly of nanoparticle filled block copolymer

UNIVERSITY

Alignment by electric field

Figure 9.7 *TEM micrographs of block copolymer films annealed in the presence of an electric field and without a field, highlighting the electric field alignment near the electrode seen in the bottom left parts of the images.*

"Local control of microdomain orientation in diblock copolymer thin films with electric fields", Science, 273, 931 (1996)

Block copolymer self assembly

- 1. Di-block copolymer self assembly overview.
- 2. Guided (directed, aligned) self assembly.
- 3. Block copolymer lithography.

Block copolymer lithography (i.e. with pattern transfer)

Synthesis of nanowires by wetting

Wettability masks: Au and Ag to PS phase In, Pb, Sn to PMMA phase

-) Gold metal vapor-deposited onto a preformed PS-b-PMMA template.
- b) After annealing at 180°C for 1 min., gold nanoparticles segregate selectively to the PS domains and form chains.
- c) Repeated deposition and short-time annealing increases the metal loading, forming continuous conductive nanowires.

Nature, 414, 735 (2001).

Block copolymer lithography

- After *deep* UV-exposure, polymer chain of PMMA is cut (PMMA is a positive deep UV lithography resist), making it more soluble in solvent.
- 2. Whereas the polystyrene (PS) chain is crosslinked, making it hard to dissolve by solvent.
- Therefore, PMMA can be selectively removed by solvents like acetic acid afterwards.

PURDUE

Nanofabrication of vertical nanowires by electroplating

- Deep UV simultaneously degrades PMMA and cross-link PS.
- Acetic acid dissolve PMMA but not cross-linked PS.
- Methanol is added to aqueous plating solution to better wet hydrophobic PS membrane.
 - ECE 695 Nanometer Scale Patterning and Processing

Density multiplication (here by 9×) lithography

- A. Top-down and side-view schematics showing the arrangement of PS-b-PDMS block copolymer molecules in the region surrounding a single post made from cross-linked HSQ resist (by e-beam lithography). The post and substrate surfaces have been chemically functionalized by a monolayer of short-chain PDMS brush.
- B. A poorly ordered monolayer of BCP (block co-polymer) spherical domains formed on a flat surface, that is, without templating. The boundaries between different grain orientations are indicated with dashed lines. The inset is a 2D Fourier transform of the domain positions that shows the absence of long-range order.

C-D. SEM images of ordered BCP spheres formed within a sparse 2D lattice of HSQ For the moment, this is considered as the most promising route for bit-patterned magnetic recording media fabrication (make the mold for nanoimprint lithography), up to 10Tbits/in² for pitch ~8nm.

Ross, "Graphoepitaxy of self-assembled block copolymers on two-dimensional periodic patterned templates", Science, 321, 939-943 (2008).

