Nanometer Scale Patterning and Processing Spring 2016

Lecture 49 Planarization, Part 2

CMP Oxide Mechanism

Fig. 18.10 in Semiconductor Manufacturing Technology, by M. Quirk and J. Serda, © 2001 by Prentice Hall

Solution Complexation

- Solutions are Not Simple but Complex
- Complexation Equilibria
 - $\begin{array}{l} \ i \ M^{+m} + j \ A^{-a} \Longleftrightarrow [M_i \ A_j]^{(im-ja)} \\ \ K_{ij} = \{[M_i \ A_j]^{(im-ja)}\} / \{M^{+m}\}^i \ \{A^{-a} \ \}^j \qquad \ \ \} = Activity \end{array}$
 - Multiple Anions A, e.g. NO₃-, OH-
 - Multiple Metals M, e.g. M^{+m}, NH₄⁺, H⁺
- Complexation Needed to Determine the Equilibrium and Species Activity,{}_i=a_i

Chen, Y. and Ring, T.A., "Forced Hydrolysis of In(OH)3-Comparison of Model with Experiments" J. Dispersion Sci. Tech., 19,229-247(1998).

Silica Dissolution - Solution Complexation

 $SiO_2(c) + H_2O <---> Si(OH)_4$ Amorphous SiO₂ dissolution $Si(OH)_4 + H^{+1} < ---> Si(OH)_3 \cdot H_2O^{+1}$ pKo=-2.44 Δ Ho= -16.9 kJ/mole $Si(OH)_4 + OH^{-1} < ---> H_3SiO_4^{-1} + H_2O$ pK1=-4.2 Δ H1= -5.6 kJ/mole $Si(OH)_4 + 2 OH^{-1} < ---> H_2SiO_4^{-2} + 2 H_2O$ pK2=-7.1 Δ H2= -6.3 kJ/mole $4Si(OH)_4 + 2 OH^{-1} < ---> Si_4O_6(OH)_6^{-2} + 6 H_2O$ pK3 = -12.0 $\Delta H3 = -12 \text{ kJ/mole}$ $4Si(OH)_4 + 4 OH^{-1} < ---> Si_4O_4(OH)_4^{-4} + 8 H_2O$ pK4=~ −27

Solution Complexation

Mechanism for Metal CMP

Fig. 18.11 in Semiconductor Manufacturing Technology, by M. Quirk and J. Serda, © 2001 by Prentice Hall

Copper Dissolution

- Solution Chemistry
 - Must Dissolve
 Surface Slowly
 without Pitting
- Supersaturation

Copper CMP Chemistry

- $K_3Fe(CN)_6 + NH_4OH$
 - Cu⁺² Complexes
 - OH⁻ i:j= 1:1, 1:2, 1:3, 1:4, 2:2, 3:4
 - NO₃⁻-weak
 - NH₃ i:j= 1:1, 1:2, 1:3, 1:4, 2:2, 2:4
 - Fe(CN)₆-3 i:j=1:1(weak)
 - Fe(CN)₆-4 i:j=1:1(weak)
 - Cu⁺¹ Complexes

Copper Electro-Chemistry

- Reaction (oxidation)
- -Sainio, C.A., Duquette, D.J., Steigerwald, J.M., Murarka, J. Electron. Mater., 25,1593(1996).

 $Cu + Fe(CN)_6^{3-} + 2 NH_3 \xleftarrow{K_{EQ}} Cu(NH_3)_2^+ + Fe(CN)_6^{4-}$

• Activity Based Reaction Rate-Gutman, E.M., "Mechanochemistry at Solid Surfaces," World Scientific Publishing, Singapore, 1994.

$$J(Flux) = k_1'' \prod_{j=reac \tan ts} a_j^{v_j} - k_2'' \prod_{j=products} a_j^{v_j} = k_2'' \prod_j a_j^{v_j} \exp(\frac{A}{R_g T} - 1)$$

- k"=reaction rate constant 1=forward,2=reverse
- $-a_j$ =activity, v_j =stociometry, μ_j =chemical potential
- $-\tilde{A} = \Sigma v_j \mu_j$ = Overall Reaction Affinity

Chemical Potential

- Mineral Dissolution $\mu_i = \mu_{io} + R_g T \ln a_i = \mu_{io} + R_g T \ln \gamma_i c_i$
- Metal Dissolution

 $\mu_i = \mu_{io} + R_g T \ln a_i + z_i \Im \phi = \mu_{io} + R_g T \ln \gamma_i c_i + z_i \Im \phi$

- ø=Electrode Potential
- S=Faraday's Constant

Mechano-Chemical Effect

- Effect on Chemical Potential of solid
 Effect of Activity of Solid
- As a result, Dissolution Rate of Metal and Mineral are Enhanced by Stress.

Effect of Stress on Dissolution

Metals

Mineral-CaCO₃

Slope of Curve=Rate

PURDUE

Oxidation of Metal Causes Stress

- Stress, $\sigma_i = E_i (P-B_i 1)/(1 v_i)$
 - P-B_i is the Pilling-Bedworth ratio for the oxide

Mechanical Properties

- Elastic Deformation
- Plastic Damage
- Plastic Deformation
 - Scratching

Abrasive Particles Cause Surface Stress

- Collisions with Wafer Surface Cause Hertzian Stress
- Collision Rate ?

• $P[=(H \tan^2 \Psi)^{1/3} U_k^{2/3}]$ is the peak load (N) due to the incident kinetic energy of the particles, U_k , The load is spread over the contact area

A. Evans "Mechanical Abrasion"

Hertzian Shear Stress

- Delatches the Oxide Layer
- Weak Interface Bond

• $C_L = 0.096 (E/H)^{2/5} K_c^{-1/2} H^{-1/8} [1 - (P_0/P)^{1/2} F^{-1/2} F^{-1/2} H^{-1/8} [1 - (P_0/P)^{1/2} F^{-1/2} F^{-1/2$

Slurry

- Aqueous Chemical Mixture
 - Material to be removed is soluble in liquid
 - Material to be removed reacts to form an oxide layer which is abraded by abrasive
- Abrasive
 - 5-20% wgt of ~200±50nm particles
 - Narrow particle size distribution (PSD), high purity(<100ppm)
 - Fumed particle = fractal aggregates of spherical primary particles (15-30nm)

Abrasive in 2D Flow Model

• In the 2-D approach the effect of the slurry and specifically the particles in the slurry is reduced to that of an unknown constant, α , determined by experimental measurements

Polishing Rate with Abrasive

 $1 + \alpha \tau_w C_A$

 \equiv

Polishing Rate without Abrasive

- where τ_w is the shear stress at the wafer surface and C_A is the concentration of abrasive.
 - $-\tau_w$: product of
 - Viscosity at wall shear stress
 - Velocity Gradient at wall Sundararajan, Thakurta, Schwendeman, Mararka and Gill, J. Electro Chemical Soc. 146(2),761-766(1999).

Effect of Particles on CMP is Unknown

• Effect of Particles on CMP

- Particle Density
- Particle Shape & Morphology
- Crystal Phase
- Particle Hardness &
 Mechanical Properties
- Particle Size Distribution
- Particle Concentration
- Colloid Stability

Jairath, R., Desai, M., Stell, M., Toles, R. and Scherver-Brewer, D., Mat. Res. Soc. Symp. Proc. 337,121(1994).

Fluid Flow: Momentum Balance

 Newtonian Lubrication Theory

$$0 = -\nabla P - \eta \nabla^2 u(x, y)$$

 Non-Newtonian Fluids

 $0 = -\nabla P - \nabla^2 \eta(\dot{\gamma})u(x, y)$

UNIVERSITY

Slurries are Non-Newtonian Fluids

Crossian Fluid- Shear Thinning

Diffusion altered rotation

CMP Flow Analogous to Tape Casting

-RING T.A., Advances in Ceramics vol. 26", M.F. Yan, K. Niwa, H.M. O'Bryan and W. S. Young, editors ,p. 269-576, (1988).

- Newtonian Y_c=0,
 - Flow Profile depends upon Pressure
- Bingham Plastic, $Y_c \neq 0$

Macro Fluid Flow

- Continuity Equation
- Navier Stokes Equation (Newtonian Fluid)
 - Rotation of Wafer (flat)
 - Rotation of Pad (flat)
 - Sohn, I.-S., Moudgil, B., Singh, R. and Park, C.-W., Mat. Res. Soc. Symp. Proc. v 566, p.181-86(2000)

Mass Transfer

- Driving Force for dissolution,
 - $C-C_{eq}=C_{eq}(1-S)$
 - $-S=C/C_{eq}$
- Different Rate Determining Steps
 - Diffusion J(Flux) = $k_c C_{eq}$ (1-S)
 - Surface Nucleation
 - Mono J $\alpha \exp(1-S)$
 - Poly J α (1-S)^{2/3} exp(1-S)
 - Spiral(Screw Dislocation) J α (1-S)²

Bohner, M. Lemaitre, J. and Ring, T.A., "Kinetics of Dissolution of β -tricalcium phosphate," J. Colloid Interface Sci. 190,37-48(1997).

Advantages of CMP

Benefits		Remarks			
1.	Planarization	Achieves global planarization.			
2.	Planarize different materials	Wide range of wafer surfaces can be planarized.			
3.	Planarize multi-material surfaces	Useful for planarizing multiple materials during the same polish step.			
4.	Reduce severe topography	Reduces topography to allow for fabrication with tighter design rules and additional interconnection levels.			
5.	Alternative method of metal patterning	Provides an alternate means of patterning metal (e.g., Damascene process), eliminating the need of the plasma etching for difficult-to-etch metals and alloys.			
6.	Improved metal step	Improves metal step coverage due to reduction in			
	coverage	topography.			
7.	Increased IC reliability	Contributes to increasing IC reliability, speed and yield (lower defect density) of sub-0.5µm devices and circuits.			
8.	Reduce defects	CMP is a subtractive process and can remove surface defects.			
9.	No hazardous gases	Does not use hazardous gases common in dry etch process.			

Disadvantages of CMP

Disadvantages		Remarks	
1.	New technology	CMP is a new technology for wafer planarization. There is relatively poor control over the process variables with a narrow process latitude.	
2.	New defects	New types of defects from CMP can affect die yield. These defects become more critical for sub-0.25 μ m feature sizes.	
3.	Need for additional process development	CMP requires additional process development for process control and metrology. An example is the endpoint of CMP is difficult to control for a desired thickness.	
4.	Cost of ownership is high	CMP is expensive to operate because of costly equipment and consumables. CMP process materials require high maintenance and frequent replacement of chemicals and parts.	

CMP for Oxide Fill of Shallow Trench Isolation (STI)

Fig. 18.23 in Semiconductor Manufacturing Technology, by M. Quirk and J. Serda, © 2001 by Prentice Hall

Layer 1 Oxide before and after CMP

Fig. 18.24 in Semiconductor Manufacturing Technology, by M. Quirk and J. Serda, © 2001 by Prentice Hall

Inter Layer Dielectric (ILD) Oxide Polish

Fig. 18.25 in Semiconductor Manufacturing Technology, by M. Quirk and J. Serda, © 2001 by Prentice Hall

CMP for Metals (Damascene Process)

- Trenches/vias etched into ILD (interlayer dielectric)
- Metal deposition or plating
 Metal CMP
- Repeat for multiple levels of metal

CMP for Dual Damascene Copper Metallurgy

Fig. 18.26 in Semiconductor Manufacturing Technology, by M. Quirk and J. Serda, © 2001 by Prentice Hall

Consequences of CMP Micro-Scratch

1) SiO₂ deposition followed by CMP

2) Via etch followed by tungsten via fill

UNIVERSITY

Fig. 18.27 in Semiconductor Manufacturing Technology, by M. Quirk and J. Serda, © 2001 by Prentice Hardward URDUI

Industrial CMP Requirements

- Stable, predictable, reproducible process
- High removal rates (>1700 Å/min for SiO₂ and >2500 Å/min for W)
- Independent of device/circuit design, substrate
- Good selectivity between metal and dielectric and similar polishing rates for metals and liners
- Few defects (scratches, peeling, particles)
- Low Non-uniformity
 - less than 5% variation in film thickness across wafer
- 3-6 mm edge exclusion

Characteristics of CMP

- CMP is widely used in IC manufacturing
 - Shallow trench isolation
 - Inter-metal Layer Dielectrics (ILD)
 - Copper metalization
- CMP is an art rather than science
 - Much more empirical data and rules than basic understanding of the process
 - Process parameters can be qualitatively understood but cannot be quantitatively modeled and predicted
- CMP is a dirty process (requires post-cleaning)

Process Issues

• Planarity:

- Pad type
- Circuit density & structure size
- Extent of ILD removed
- Downforce, platen speed & carrier speeds
- The goal is to minimize SHR and maximize PD thereby minimizing Within-Die Non-Uniformity (WIDNU)

- Defect density:
 - Pad & slurry type
 - Use of secondary platen
 - Post-CMP cleaning method

- Removal rate:
 - Carrier film, pad & slurry type
 - Downforce
 - Platen & carrier speeds

- Within-Wafer Non-Uniformity (WIWNU):
 - Wafer flatness
 - Carrier film, pad & slurry type
 - Carrier design
 - Pad conditioning method
 - Platen & carrier speeds
 - Retaining ring design
 (i.e. extent of pressure discontinuity
 between wafer edge and retaining ring)
 - Slurry injection scheme

CMP Parameters

Parameter	Planarization Results on Wafer			
Polish time	Amount of material removed			
	• Planarity			
Pressure on wafer carrier	Removal rate			
(downforce)	Planarization and non-uniformity			
Platon spood	Removal rate			
Flaten speed	Non-uniformity			
Carrier speed	Non-uniformity			
Slumy chamistry	Material selectivity			
Sturry chemistry	Removal rate			
Slurry flow rate	• Affects how much slurry is on the pad and the			
Sidily now rate	lubrication properties of the system			
	Removal rate			
Pad conditioning	Non-uniformity			
	Stability of CMP process			
Wafer/slurry temperature	Removal rate			
Wafar back prossure	Center slowness/non-uniformity			
water back pressure	Wafer breakage			

The CMP Infrastructure

- Polishing:
 - Rotary (single or multiple heads and platens)
 - Linear (multiple heads)
- Cleaning:
 - Mechanical scrubbing (with & without chemistry or megasonics)
 - Wet cleaning (with and without megasonics)
- Measurement and inspection:
 - Removal Rate
 - Thickness uniformity (wafer-to-wafer, within-die, die-to-die)
 - Defect density
 - Dishing
 - Erosion
 - Plug recess
 - Planarity
 - Surface Roughness

CMP Tool with Multiple Wafer Carriers

Motor Current Endpoint Detection

Optical Interferometry for Endpoint Detection

Redrawn from H. Lituak and H. M. Tzeng, "Implementing Real-Time Endpoint Control in CMP," *Semiconductor International*) July, 1996) p. 262.

Post CMP Cleaning

- Remove particles and chemical contamination following polishing
- Involves buff, brush clean, megasonic clean, spin-rinse dry steps
- Buffing
 - after main polish , wafers "polished" using soft pads
 - used following metal CMP
 - oxide slurries, DI water, or NH₄OH used
 - changes pH of system to reduce adhesion of metal particles
 - removes metal particles embedded in wafer
- Brush cleaning
 - brushes made from PVA with 90% porosity
 - NH₄OH (1-2%) added for particle removal (prevents redeposition), citric acid (0.5%) added for metal removal, HF etches oxide to remove subsurface defects
- Megasonic cleaning
 - sound waves add energy to particles, thin boundary layers
 - cleaning chemicals added (TMAH, SC1, etc.)
 - "acoustic streaming" induces flow over particles

Schematic Diagram of Post-CMP Scrubbing

Redrawn from D. Hynes, et al, "Brush Scrubbing Emerges as Future Wafer-Cleaning Technology, *Solid State Technology*, (July 1997): p. 210.

Evolution of Post-CMP Cleaning

	Wet bench with megasonics	Doublesided scrubber + DI water	DSS + NH ₄ OH	$DSS + NH_4OH and HF$	DSS + Additional Chemistries
Oxide					
СМР	\checkmark	\checkmark	\checkmark	\checkmark	
Tungsten CMP			\checkmark	\checkmark	
Copper CMP					\checkmark

Fig. 18.21 in Semiconductor Manufacturing Technology, by M. Quirk and J. Serda, © 2001 by Prentice Hall

The CMP Module

Wafer Process Flow with CMP

Courtesy of Advanced Micro Devices

