Nanomaterials

Lecture 11: Scanning Probe Lithography
Quantum Corrals

Fe atoms on Cu(111)

Quantum Mirage (Kondo Resonance)

Topography:

Co atoms on Cu(111)

dI/dV:

Room Temperature Manipulation of Si(111)

C. Julian Chen, *Introduction to Scanning Tunneling Microscopy*

Department of Materials Science and Engineering, Northwestern University
Field Evaporation of Gold

C. Julian Chen, *Introduction to Scanning Tunneling Microscopy*

Department of Materials Science and Engineering, Northwestern University
Hydrogen Passivated Si(100)
Highly reactive “dangling bonds” are created by using the STM as a highly localized electron beam.

The linewidth and desorption yield are a function of the incident electron energy, the current density, and the total electron dose.

• Selective chemistry can be accomplished on patterned areas.

Hydrogen Desorption Mechanisms

Si-H(D) \(\sigma \rightarrow \sigma^* \) Transition

Heating & Cooling Compete

- Vibrational Up Pumping due to Current
- Cooling due to Phonon Coupling
- Hot Ground State

Department of Materials Science and Engineering, Northwestern University
Electron Stimulated Desorption Isotope Effect

- Deuterium has a much lower ESD yield than hydrogen.
- Desorption conditions exist where all of the hydrogen and none of the deuterium is removed from the surface.
- Deuterating CMOS devices leads to longer device lifetimes.

Hydrogen Desorption Mechanisms

![Graph 1: Si-H(D) \(\sigma \rightarrow \sigma^* \) Transition](image)

- **Excitation Energy (eV)**
- **Si-H Bonding Distance (Å)**
- **t = 0**

![Graph 2: Heating & Cooling Compete](image)

- **Excitation Energy (eV)**
- **Si-H Bonding Distance (Å)**
- **Vibrational Up Pumping due to Current**
- **Cooling due to Phonon Coupling**
- **Hot Ground State**

Department of Materials Science and Engineering, Northwestern University
Electron Stimulated Desorption Isotope Effect

- Deuterium has a much lower ESD yield than hydrogen.
- Desorption conditions exist where all of the hydrogen and none of the deuterium is removed from the surface.
- Deuterating CMOS devices leads to longer device lifetimes.

Direct Measurement of D:H Ratio

Passivation at 650 K ⇒ D:H Ratio ~ 5
Passivation at 350 K ⇒ D:H Ratio ~ 50

Reducing the thermal budget of CMOS processing should lead to greater deuterium incorporation and longer device lifetimes.

Statistical thermodynamics model confirms experimental results.

Department of Materials Science and Engineering, Northwestern University
Robustness of Si(100)-2×1:H

XPS results after ambient exposure

Selective Molecular Adsorption of Norbornadiene on Silicon

Department of Materials Science and Engineering, Northwestern University
Feedback Controlled Lithography

Hydrogen Desorption Event

\[\Delta Z \sim 1.5 \, \text{Å} \]

Use FCL to create template of Si dangling bonds