Nanometer Scale Patterning and Processing Spring 2016

Lecture 48 Planarization, Part 1

PLANARIZATION ECE 695, Spring 2016

Minghao Qi

Why We Need Planarization?

UNIVER

Depth of Focus (DOF) in Optical Lithography

Qualitative Definitions of Planarization

Fig. 18.2 in Semiconductor Manufacturing Technology, by M. Quirk and J. Serda, © 2001 by Prentice Hall

Polishing and Planarity

- Step Height Ratio (SHR) = Post Step Height / Pre Step Height.
- The goal is to minimize SHR and maximize Planarization Distance (PD).

Traditional Planarization Approaches

- Glass Reflow
- Spin-on-films
- Etchback after reflow or spin-on

- Uses available tools and processes
- Can not achieve "perfect and global flatness"
- Open loop and difficult to control

Reflow for Planarization

BoroPhosphoSilicate Glass (BPSG) reflow

 BPSG has lower reflow temperature due to the
 doping of Boron and Phosphate

Fig. 18.6 in Semiconductor Manufacturing Technology, by M. Quirk and J. Serda, © 2001 by Prentice Hall

Spin-On Glass or Dielectrics

- Spin-on glass (SOG)
- Spin-on Dielectrics (SOD)
 - Hydrogensilsesquioxane (HSQ)

Fig. 18.7 in Semiconductor Manufacturing Technology, by M. Quirk and J. Serda, © 2001 by Prentice Hall

Etchback

• Difficult to control (open loop)

Fig. 18.5 in Semiconductor Manufacturing Technology, by M. Quirk and J. Serda, © 2001 by Prentice Hall

SOG + Etchback: a Simple Alternative

Planarization with Spin-On-Dielectric Material: HSQ (Dow Corning FOx-16)

1 µm

_ 1st coat

2nd coat

(c) one min. bake @ 360 °C (d) 15 min. bake @ 360 °C

Chemical Mechanical Planarization (CMP)

- What is CMP?
 - CMP is a physical-chemical process used to make wafer surfaces locally (micrometer scale) and globally (millimeter scale) flat.
 - Chemical action
 - hydroxyl ions attack SiO₂ in oxide CMP, causing surface softening and chemical dissolution
 - oxidants enhance metal dissolution and control passivation in metal CMP
 - Mechanical action
 - polisher rotation and pressure

Chemical Mechanical Planarization (CMP)

Preston Equation (Preston, F., J. Soc. Glass Technol., 11,247,(1927)).

Removal Rate = $K_p^*S^*P$

S =Relative Velocity, P = pressure and K_p is the proportionality constant.

Fig. 18.8 in Semiconductor Manufacturing Technology, by M. Quirk and J. Serda, © 2001 by Prentice Hall

Major CMP components

CMP Systems and Parameters

PURDUE

Relative Velocity, S

- Rotating Multi-head Wafer Carriage and Rotating Pad
- Wafer rotates on Film of Slurry
- Relative Velocity: S = (Wt×Rcc)–[Rh×(Wh –Wt)]
 - when Wh=Wt
 Velocity = const.

CMP Contour Plot for Center Slowness

Effect of Downforce on Removal Rate & Planarity

• Increase in downforce (wafer pressure applied to the polishing pad) results in a linear increase in removal rate (i.e. Preston's Equation)

• Increase in downforce degrades planarity due to pad deformation and subsequent increase in local pressure at the 'valley' regions (i.e. Hook's Law)

Effect of Platen Speed on

Removal Rate & Planarity

- Increase in platen speed increases removal rate linearly
- Increase in platen speed improves planarity

• At higher speeds the pad contacts mainly the 'hill' regions since it does not have sufficient time to conform to the 'valley' regions

Preston's Equation

- Simplest (and probably the only) CMP model
- Expresses polishing rate in terms of applied pressure and relative velocity between polishing pad and wafer
 - $RR = K_p \bullet P \bullet S$
 - K_p = Preston coefficient (inversely proportional to elastic modulus of material being polished)
 - P = down pressure
 - S = pad-wafer relative speed
 - can predict general trends
 - observed RR usually proportional to P and S
 - cannot predict within wafer non-uniformity, feature effects, or variations due to pattern density effects

Effect of Structure Size & Density on Post Step Height

• SHR is greater on metal pads compared to isolated narrow lines

• Areas with lower circuit density polish faster than areas with dense underlying topography

• Each circuit design will have a different WIDNU due to variations in size and density of interconnects

Dummy structures can mitigate this problem

Pattern Erosion and Large Feature Dishing

• Dense SRAM Array

 Erosion is the thinning of oxide and metal in a patterned area, while dishing is a reduction in the thickness of a large tungsten feature toward the center of that feature.

UNIVERS

Effect of Carrier Speed on Wafer Center & Edge Removal Rates

- Platen speed is maintained at 70 RPM
- Center-to-edge removal rate difference increases with increasing carrier speed
- Carrier diameter << platen diameter & at low carrier speeds, the linear velocity vector created by the carrier is much smaller than that created by the platen
- As carrier speeds approach & exceed platen speed, the linear velocity vector created by the carrier becomes significant **PIIR**

Effect of Pad Hardness on Post Step Height and Planarization Distance

• Harder pads deform less under pressure thus leading to:

- Lower SHR, higher PD, and improved within die non-uniformity (WIDNU, i.e in mm range)

• Harder pads also result in higher removal rates and higher defect densities

CMP Head Carrier Design and Wafer Edge Nonuniformity

Redrawn from K. Wijekoon, R. Lin, B. Fishkin, S. Yang, F. Redeker, G. Amico, and S. Nanjanqud, "Tungsten CMP Process Developed," *Solid State Technology*, (April, 1998), p. 55

CMP Polishing Pad

Polyurethane tough polymer Hardness = 55**Fiber Pile** Specific Gravity = 0.3 Compressibility=16% rms Roughness = 30µm Conditioned

Pad Mechanical Model - Planar Pad

- Warnock, J., J. Electrochemical Soc. 138(8) 2398-402(1991).
- Does not account for Pad Microstructure

Pad Conditioning

- Effect of Pad on CMP
 - Roughness increases Polishing Rate
 - Effect of Pad Hardness
 &Mechanical
 Properties
 - Effect of Conditioning
 - Reason for Wear-out Rate

Jairath, R., Desai, M., Stell, M., Toles, R. and Scherver-Brewer, D., Mat. Res. Soc. Symp. Proc. 337,121(1994).

CMP Polishing Pad

Photo courtesy of Speedfam-IPEC

Photo 18.2

Layer Hardness Effects

- Effect of Mechanical Properties of Materials to be polished
- Relationship of pad, abrasive and slurry chemistry needed for the materials being polished.

Izumitani, T. in Treatis on Materials Science and Techn., Academic Press, 1979, p.115.

CMP Oxide Mechanism

Fig. 18.10 in Semiconductor Manufacturing Technology, by M. Quirk and J. Serda, © 2001 by Prentice Hall

Solution Complexation

- Solutions are Not Simple but Complex
- Complexation Equilibria
 - $\begin{array}{l} \ i \ M^{+m} + j \ A^{-a} \Longleftrightarrow [M_i \ A_j]^{(im-ja)} \\ \ K_{ij} = \{[M_i \ A_j]^{(im-ja)}\} / \{M^{+m}\}^i \ \{A^{-a} \ \}^j \qquad \ \ \} = Activity \end{array}$
 - Multiple Anions A, e.g. NO₃-, OH-
 - Multiple Metals M, e.g. M^{+m}, NH₄⁺, H⁺
- Complexation Needed to Determine the Equilibrium and Species Activity,{}_i=a_i

Chen, Y. and Ring, T.A., "Forced Hydrolysis of In(OH)3-Comparison of Model with Experiments" J. Dispersion Sci. Tech., 19,229-247(1998).

Silica Dissolution - Solution Complexation

 $SiO_2(c) + H_2O <---> Si(OH)_4$ Amorphous SiO₂ dissolution $Si(OH)_4 + H^{+1} < ---> Si(OH)_3 \cdot H_2O^{+1}$ pKo=-2.44 Δ Ho= -16.9 kJ/mole $Si(OH)_4 + OH^{-1} < ---> H_3SiO_4^{-1} + H_2O$ pK1 = -4.2 Δ H1= -5.6 kJ/mole $Si(OH)_4 + 2 OH^{-1} < ---> H_2SiO_4^{-2} + 2 H_2O$ pK2=-7.1 Δ H2= -6.3 kJ/mole $4Si(OH)_4 + 2 OH^{-1} < ---> Si_4O_6(OH)_6^{-2} + 6 H_2O$ pK3 = -12.0 $\Delta H3 = -12 \text{ kJ/mole}$ $4Si(OH)_4 + 4 OH^{-1} < ---> Si_4O_4(OH)_4^{-4} + 8 H_2O$ pK4=~ −27

