Nanometer Scale Patterning and Processing Spring 2016

Lecture 46
Dry Etching, Part 2

Pressure range for normal glow-discharge plasmas

Necessary conditions:

If pressure is too low, λ is large, too few collisions in plasma to sustain energy

1)
$$\lambda < L$$

so collisions exchange energy within plasma

$$\lambda = \frac{k_B T}{\sqrt{2}\pi d^2 P}$$

If pressure is too high, λ is small, very little acceleration between collisions

2)
$$E_{\rm K}$$
 > ionization potential of Ar^+

$$\frac{1}{2}mv_f^2 = 2ax \approx Eq\lambda$$

High-density plasmas can sustain at lower pressures

RF Plasma

f = 13.6 MHz, $\tau \approx 12 \text{ ns}$

- e^{-} transit time over 10 cm: $t \approx 10$ ns.
- e- follows RF field

But wait a minute!

If the plasma is
a good conductor,
does the RF field
penetrate it?

Ar+ drifts with DC field

Plasma is conductive but not a good one

τ: average time between collisions

$$\sigma = \frac{ne^2\tau}{m}$$

We estimated $\tau \approx 0.01 \, \mu s$, so at 10 mT, $\sigma \approx 300 \, s^{-1}$

Is this a good metal?

No!

Metals: ρ_e < 100 μΩ-cm = 1 μΩ-m, σ > 10⁶ s⁻¹

What then is the RF field penetration depth, skin depth?

$$\delta = \frac{1}{\sqrt{\mu\sigma\omega}} \approx 5 \text{ mm}$$

Energy pumped in from edges of plasma

Charge balance in RF plasma

RF plasma allows electrodes to be insulators

Voltages in RF Plasma

$$\frac{V_1}{V_2} = \left(\frac{A_2}{A_1}\right)^m$$

 A_2 and A_1 are areas of the electrodes, m=4 in simple theory, but usually is 1~2.

The larger electrodes are typically the chamber wall.

Sputtering Effect

Momentum transfer:
$$\begin{cases} p_{\rm e} = mv \\ P_{\rm Ar} = MV = 1832mv/43 \approx 43p_{\rm e}. \end{cases}$$

No surprise.

from ion implantation,
most energy transfer when:
i.e. incoming particle has mass
close to that of target.

$$\Delta E = E_1 \frac{4 \, M_1 M_2}{\left(M_1 + M_2\right)^2}$$

Sputter Etch

Re-deposition in Sputter Etch

resist

2 для

after removal of resist, note redeposit

Solution to Re-deposition: Forming Volatile Products in plasma

Solid	Etch Gas	Etch Product
Si, SiO ₂ , Si ₃ N ₄	CF ₄ , SF ₆ , NF ₃	SiF ₄
Si	Cl ₂ , CCl ₂ F ₂	SiCl ₂ , SiCl ₄
Al	BCl ₃ , CCl ₄ , Cl ₂	Al ₂ Cl ₆ , AlCl ₃
Organic Solids	O_2	CO, CO ₂ , H ₂ O
(photoresists, etc)	O ₂ +CF ₄	CO, CO ₂ , HF
Refractory Metals	CF ₄	WF ₆
(W, Ta, Nb, Mo)	CI ₂	WCI ₆
III-V	Cl ₂ , CCl ₂ F ₂	GaCl ₃ , AsCl ₅
GaAs, InP	CH ₄ /H ₂	PH_3 , $In(CH_3)_3$

Configurations for Parallel-Plate systems

$$(rf)_1 \neq 0 \ (rf)_2 = 0$$

 $(rf)_1 = 0 \ (rf)_2 \neq 0$
 $(rf)_1 \neq 0 \ (rf)_2 \neq 0$

Plasma etching
Reactive ion etching
Triode etching

Dry etch combines

physical etch

e.g. Nobles: Ar+

+ reactive ions

free radicals

Dissociation:

$$CF_4 + e^- \rightarrow$$
 $CF_3 + F + e^-$

Dissociative ionization:

$$CF_4 + e^- \rightarrow$$
 $CF_3^+ + F + 2e^-$

Ionization:

$$CF_3 + e^- \rightarrow CF_3^+ + 2e^-$$

Excitation:

$$CF_4 + e^- \rightarrow CF_4^* + e^-$$

Recombination:

$$CF_3^+ + F + e^- \rightarrow CF_4$$

$$F + F \rightarrow F_2$$

Physical etching involves directional momentum transfer by Ar+, CI+ etc.

Because momentum is transferred with every collision, sticking is essentially unity, *S* ≈ 1. This enhances anisotropic character

Sputter yield depends on angle of incidence, helping planaraization

Sidewall Deposition

- REMOVAL of surface film and
- DEPOSITION of plasma reaction products can occur simultaneously
- Sidewall deposition can be passivation

Ion-enhanced Chemical Etching

Physical and chemical processes not just independent of each other. Ion beam can enhance chemical etching:

Time (sec)

Sidewall control

Tailor mix of gas as well as ion energy & rate to select desired wall profile.

Summary of Plasma Etching

Sidewall-inhibitor Deposition

- · Sources: etch byproducts, mask erosion, inlet gases.
- · Removed on horizontal surfaces by ion bombardment.
- · A possible mechanism in ion enhanced etching.

Ion Enhanced Etching

- · Needs both ions and reactive neutrals.
- May be due to enhanced etch reaction or removal of etch byproduct or inhibitor.
- Anisotropic, selective.

Etch Rate Increases with large concentration of active ions/radicals

This produces a large amount of atomic F. Compare this to

Hydrogen Concentration in Fluorine based plasmas

- H ties up F, and increases the chance of polymerization (Teflon like).
- CHF₃ etches SiO₂ fast, but Si slowly.
- C₄F₈ is used for polymerization in deep RIE etch.

