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Motivation

Use reduced noise properties of quantum states of light to enhance
sensitivity of sensors.

Is possible to do so for a practical application?

» Plasmonic sensors

Plasmonic sensors have found applications in areas such as:

» Biological marker detection

» DNA molecule trapping and detection
» Pathogen trapping and detection

» Chemical sensing

Plasmonic sensors have reached their ultimate sensitivity given by
the shot noise limit (fundamental limit).




Outline

Background 1

» Continuous variable (CV)

» Characterization of CV entanglement

Generation of quantum states of light

» Four-wave mixing
» Squeezed states of light

» Entangled twin beams and entangled images

Interface with plasmonic structures

» Transduction of entangled images

» Quantum enhanced plasmonic sensors

Conclusion




BACKGROUND




Characterization of Continuous Variables

¢ For the case of the electromagnetic field the continuous variables that are
typically measured are the quadratures:

E(t) = Eo(ae™ ™t + a'e™?) = Ey[X cos(wt) 4+ Y sin(wt)]
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¢ Quantum properties directly related to their noise properties.

¢ Quantum mechanics imposes a minimum noise level on the field:

(AX)?)((AY)?) > 1 <— Heisenberg Uncertainty Principle

¢ Experimental characterization of quantum properties through noise
measurements.




Phase Space Diagram

¢ A useful way of visualizing the noise is in terms of its distribution along the
guadratures (phase space).

¢ A coherent state is the quantum
representation of a classical state.

(AX)?) = ((AY)*) =1
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Standard Quantum Limit (SQL)
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¢+ Fundamental limit in sensitivity of sensor using classical states of light.
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Origin of Quantum Noise

¢+ Quantum noise can be viewed as a result of the quantization of the field
(photons) and the random distribution of the photons.
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¢ This noise represents the SQL, or shot noise.
¢ Quantum mechanics allows to redistribute the noise: ((AX)?)((AY)?) > 1

¢ Possible to have ((AX)?) <1 or ((AY)?) < 1 (squeezed state).




Squeezed States

¢ Generation of squeezed states requires a nonlinear process that can emit
pairs of photons into the field.
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¢ Amount of squeezing grows with the strength of the nonlinearity.

¢ An amplitude squeezed states implies ordering in the temporal distribution

of photons.
Amplitude
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Twin Beams (two-mode squeezed states)

¢ Pair of photons can also be emitted into separate beams of light.
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¢ Twin beams have a relative ordering of the temporal distribution of
photons between the two beams.
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Generation of Twin Beams

¢ Nonlinear process that can emit pair of photons needed to generate two-
mode squeezed states or twin beams.
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Parametric down conversion
¢ Probe and conjugate photons are Quantum

always generated in pairs. » correlations




GENERATION OF

QUANTUM STATES




Four-Wave Mixing

¢ Non-degenerate four-wave mixing in a double-A system in D1 line of Rb.
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Experimental parameters:

Pump ~ 400 mW
Probe ~ 10 — 100 uW
pump F Cell ~ 12 mm
Gain ~ 6

0 ~ 0.3 degrees
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» C.F. McCormick, V. Boyer, E. Arimondo, and P.D. Lett, Opt. Lett. 32, 178 (2007).
* C.F. McCormick, A.M. Marino, V. Boyer, and P. D. Lett, PRA 78, 043816 (2008).



Intensity-Ditference Squeezing

~4r| | ~9dB (13% of SQL) . _ s -X,

Squeezing [dB]

_o |,

Experimental parameters:

0 0.5 1 15 2 2.5 3 Pump ~ 500 mW
Frequency [MHz| Probe ~ 100 uW
Cell ~12 mm

¢ Squeezing bandwidth ~ 15 to 20 MHz
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Experimental Setup




Entanglement Criteria

¢ Two systems, a and b, are entangled or inseparable if it is not possible to
describe them independently.
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¢ For variables that have a continuous range of possible values (e.g. amplitude
and phase):

|0 ab :/f(XaaXb)Xa)a|Xb>bande with (X, Xp) # (X)) f(X)

¢ Need to look at collective variables:

) (X, — X.) Amplitude difference

Joint V2 » .
SQL:
quadratures |y _ 1y .y . .
=gttt ¥e) Phasesum (AX)) = (AV2)?) =1

¢ Inseparability criterion:

T=((AX_)) + ((AV:)) <2

* L.M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, PRL 84, 2722 (2000).
* R. Simon, PRL 84, 2726 (2000). ;



Homodyne Detection

| Spectrum |- T
Analyzer
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Field .
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Entanglement Measurements

Noise power (dB)

¢ Phases of local oscillators scanned synchronously.




SPATIAL PROPERTIES




Phase-Matching Condition

¢ |In FWM fields need to conserve momentum

Phase-matching condition:
?’r — —k%
Ak, =2k% — k% — ki ~0

¢+ Phase-matching is needed for efficient FWM.

Efficiency

3

¢ Lack of cavity make system
multi-spatial-mode.

amplified
probe
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generated
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Spatial Quantum Correlations

¢ Verify independence of spatial regions through noise analysis
[M. Martinelli et al., PRA 67, 023808 (2003)].

Probe seed Probe out Conjugate out
mask .

probe seed

mmp ¢ Intensity-difference squeezing at 3.5 MHz:

/ » “NT"-5.4dB
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A6 » “T":-5.2dB

¢ Independence of spatial regions is a hallmark of spatial quantum correlations.

* V. Boyer, A.M. Marino and P.D. Lett, PRL 100, 143601 (2008). %



Entangled Images

¢ The local oscillator selects the “shape” of the beam that is measured by
the homodyne detection.
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* V. Boyer, A.M. Marino, R.C. Pooser, and P.D. Lett, Science 321, 544 (2008). %




Entangled Images

Probe

Conjugate %
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Intensity-difference squeezing:
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Properties of Entangled Images
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¢ Minimum size of the correlation area known as the coherence area and can be
seen as a “pixel”.

¢ “Pixel” in one images is only correlated with corresponding pixel in other image.

¢ Can think of each of “pixel” as an independent channel to probe a sensor.
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INTERFACE WITH

PLASMONIC STRUCTURES




Experimental Setup

¢ Study if plasmonic structure maintain quantum properties of entangled images.

plasmonic
structures
laser
PBS
AOM
Pr @ oLp \.: .

¢ |In transduction, entanglement transferred from photons to plasmons and back
to photons.

« M.W. Holtfrerich et. al, Optica 3, 985 (2016). %



Beam Shaping of Probe

¢ Use DLP (digital light processor) to shape input probe.
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¢ Lightcrafter module:

» Only on-off position for each pixel
» Binary amplitude control
» 608 x 684 pixels

» ~ 25% total transmission




Plasmonic Structures

~400 nm ~220 nm

¢ Array of nanoholes in a thin silver film
(100 nm thickness).
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¢ Use triangular structures.

¢ Incident field at 795 nm excites localized
surface plasmons, which lead to EOT
(extraordinary optical transmission).
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¢ Array of nanoholes leads to resonance. § 08 structure |

probe
structure

¢ Use two independent plasmonic structures £ o5}
(one for probe and one for conjugate). g 04t

Conjugate structure ~ 65 % 2 0.2}

Probe structure ~ 50 % 0 A - . .
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Wavelength (nm)




Modeling of Plasmonic Structures
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¢ Use COMSOL to model properties
of plasmonic structures.

probe
structure

Normalized Transmission

¢+ Modeling shows profile
Is localized around the mp
edges of apertures.

Localized surface
plasmons (LSP)
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Spatial Properties

¢ A large number of k-vectors can coupled to LSPs [PRL 110, 156802 (2013)].
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Pump - I plasmonic
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Entanglement Properties
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¢ Loss of entanglement consistent with losses introduced by plasmonic structures.
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QUANTUM ENHANCED

PLASMONIC SENSORS




Plasmonic Structures as Sensors

¢ QOperation based on two principles:

» Extraordinary optical transmission (EOT).

» Array of nanoholes leads to a resonance as a function of frequency [surface
plasmon resonance (SPR) sensors].

substance of interest
induces local changes in 200 nm
index of refraction

resonance shift
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Sensitivity Enhancement

resonance shift due

to change in index Uncertainty in index of refraction estimation:

resulting chan '
esulting change of refraction

In transmission measurement noise
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enhanced sensitivity change in transmission
for change in
frequency index of refraction

¢ Sensitivity Enhancement:

» Reduced noise (current devices limited by quantum noise)
» Use quantum states of light

» Increased slope (reduce resonance width and increase transmission)
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Expected Enhancement

¢ For large transmissions sensitivity enhancement given by degree of
guantum noise reduction.
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Enhancement:
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Transmission

¢ Main technical challenge: quantum states are very fragile to sources of loss.
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Experimental Setup

¢ Probe beam used to probe plasmonic sensor.

¢+ Conjugate beam serves as a “reference” beam.
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Characterization
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¢ Plasmonic sensor placed in controlled environment to control change in
iIndex of refraction and perform precision measurements.
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Characterization of Sensor

¢ Pressure controlled chamber
allows precise control of index of
refraction.

¢+ Modulation of index provides
measure of sensitivity.

¢+ Change in index of refraction
calibrated with an interferometer.




Normalized Noise [dB]

Quantum Enhanced Plasmonic Sensor

¢ Test plasmonic structure as sensor (preliminary results).
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| Sensitivity:

| Classical States:
An ~9 x 10~1° RIU/v/Hz

Quantum States:
An ~ 5 x 1071° RIU/+/Hz
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Measurement bandwidth: 100 Hz
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Outlook

¢ Use the multi-mode nature of entangled beams to probe
plasmonic sensor in parallel.

¢ Design alternative structures to allow with higher
transmissions and narrower resonances.

mp Further enhancements in sensitivity

¢ Test plasmonic sensors in more realistic configuration.

¢ Possible imaging applications?
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Conclusions

¢ Four-wave mixing used to generate entangled images.

¢ Transduction through plasmonic structures preserves
entanglement and spatial properties of entangled images.

¢ Enhancement of plasmonic sensors.
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