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Resonant Tunneling Diodes, Single Electron Devices, 
Quantum Cellular Automata, Molecular Electronics, …

Nature, 391, 59 (1998).

Carbon Nanotube Transistors Molecular Electronics

Sci. American, 282, 86 (2000).

Nanoelectronic Alternatives
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A. C. Seabaugh, P. Mazumder,
Proceedings of the IEEE, 87, 535 (1999).

Projected timeline for the electronics industry:

“Soon researchers will bring us devices that can translate foreign languages as fast
as you can talk; materials 10 times stronger than steel at a fraction of the weight;
and -- this is unbelievable to me -- molecular computers the size of a tear drop
with the power of today's fastest supercomputers.”

President William J. Clinton
State of the Union Address

January 27, 2000

Nanoelectronic Predictions
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http://courses.nus.edu.sg/course/phyweets/Projects99/Quantum

Resonant Tunneling Diode
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http://courses.nus.edu.sg/course/phyweets/Projects99/Quantum

Negative Differential Resistance
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Coulomb Blockade: Suppression of electron tunneling to an island
(0-D quantum dot) by a single electron charging energy

NOTE: Capacitor charging energy = Q2/2C
For a single electron e2/2C

Two Conditions for Coulomb Blockade:

(1) Thermal Fluctuations: e2/C >> kT

(2) Heisenberg Uncertainty: ΔEΔt >> h
(e2/C)(RtC) >> h Rt >> h/e2

Single Electron Devices
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Temperature Condition for Coulomb Blockade:

To suppress thermal fluctuations, e2/C >> kT

For room temperature operation, C ~ 1 aF = 10-18 F

For C ~ 1 aF, quantum dot dimensions ~ 1 nm

Since it is challenging to fabricate down to 1 nm, most
single electron devices only operate at low temperature

Temperature Requirement for
Coulomb Blockade
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Top gates deplete 2-DEG, thus forming a quantum dot

GaAs/AlGaAs Single Electron Device
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Coulomb Blockade I-V Characteristic



Department of Materials Science and Engineering, Northwestern University

Single Electron Transistor
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Single Electron Transistor
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Benefits:

(1) Low power since only one electron moves through the device

(2) High device density is possible

Problems:

(1) Fabrication is difficult

(2) Inherently slow since only one electron moves through the device
Difficult to charge up capacitance at outputs (fan-out problems)

(3) Interconnections

Single Electronics
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Consider four coupled quantum dots:

If two electrons are injected into this cell, there are two possibilities
that minimize electrostatic energy:

OR

“0” “1”

Quantum Cellular Automata
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Adjacent QCA cells align to minimize electrostatic energy:

• If you switch the first cell, the other cells will follow

Information transfer without electron transfer
No interconnections are required between cells

• Intersecting QCA rows allow for logic and computation

Quantum Cellular Automata



Department of Materials Science and Engineering, Northwestern University

I. Amlani, et al., Science, 284, 289 (1999).

Quantum Cellular Automata
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• Although QCA minimizes the number of interconnections, it
still suffers from the same thermal fluctuation problems as single
electronic devices

• Consequently, QCA must be implemented at low temperatures
or at molecular length scales:

SO3
–

SO3
–

QCA Molecule

Co

Quantum Cellular Automata
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Molecules Get Wired

Science, 294, 2442 (2001).
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M. A. Reed, et al., Science, 278, 252 (1997).

Contacting Molecules with Break Junctions
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M. A. Reed, et al., Science, 278, 252 (1997).

Room Temperature Molecular Conduction
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J. Chen, et al., Science, 286, 1550 (1999).

Contacting Molecules with Nanoscale Pores
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J. Chen, et al., Science, 286, 1550 (1999).

Molecular Negative Differential Resistance
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Sci. American, 282, 86 (2000).

Metal-Molecule-Metal Junctions:

Recent results suggest that the contacts play a large – if not 
dominant role – in molecular electronic devices.

Science, 300, 1384 (2003).

Recent Molecular Electronics Research
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• Fundamental scanning tunneling microscopy experiments in 
ultra-high vacuum at room temperature

• Studies on silicon bridge the gap between fundamental 
research and modern technology

Experimental Approach
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1 nm

C

A Styrene H
C
Si

2 nmB

Individual styrene molecules
are probed with the STM

N. P. Guisinger, et al., Nano Letters, 4, 55 (2004).

Styrene on the Si(100)-2×1 Surface
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• Multiple NDR events.
• NDR is only observed at negative sample bias. 
• Molecule is desorbed from the surface at positive bias.

-3.0

-1.5

0.0

1.5

3.0

C
ur

re
nt

 (n
A

)
-5.0 -2.5 0.0 2.5 5.0

Voltage (V)

Styrene on n+-Si(100)

NDR

ESD

-3.0

-1.5

0.0

1.5

3.0

C
ur

re
nt

 (n
A

)

-5.0 -2.5 0.0 2.5 5.0
Voltage (V)

Clean n+-Si(100)

I-V Curve for Styrene on n+-Si(100)



Department of Materials Science and Engineering, Northwestern University

B 3 nm

1 nm

C

A TEMPO N
O

H
C
Si

TEMPO resists electron stimulated desorption
since it is a saturated hydrocarbon

TEMPO:
(2,2,6,6-tetramethyl-1-piperidinyloxy)

N. P. Guisinger, et al., Nano Letters, 4, 55 (2004).

TEMPO on the Si(100)-2×1 Surface
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• Multiple NDR events.
• NDR is only observed at negative sample bias. 
• Shoulder is only observed at positive sample bias.

I-V Curve for TEMPO on n+-Si(100)
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Equilibrium NDR Shoulder

For p+-Si(100), the behavior should be qualitatively the 
same, except at the opposite bias polarity.

Band Diagrams for Molecules on nBand Diagrams for Molecules on n++--Si(100)Si(100)
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TEMPO on p+-Si(100)
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• Qualitatively similar behavior to TEMPO on n+-Si(100) 
except opposite polarity, as expected.

NDR for TEMPO on pNDR for TEMPO on p++--Si(100)Si(100)
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To become commercially viable, many obstacles must be overcome:

(1) Macroscopic contacts, interconnections

(2) Integration with conventional devices

(3) Reliability

(4) Reproducibility

Defect tolerant architectures and nanotube electronics help
circumvent some of these problems

Molecular Electronics
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A Defect-Tolerant Computer Architecture

J. R. Heath, et al., Science, 280, 1716 (1998).
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