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Outline

� Session I (1:30 PM – 3:15 PM)
1. Introduction (McGaughey)
2. MD simulation, Green Kubo, direct method (Ruan)
3. Harmonic lattice dynamics, spectral methods (Ruan)

� Session II (3:45 PM – 5:30 PM)
4. Anharmonic lattice dynamics, first principles (McGaughey)
5. Phonon-boundary and phonon-defect scattering (McGaughey)
6. Phonon-electron coupling and non-equilibrium (Ruan)
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� 2.1 Molecular Dynamics Basics
� 2.2 The Green-Kubo Method
� 2.3 The Direct Method
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Molecular Dynamics Videos

Trajectory of silicon

Laser ablation of metals,
Courtesy of Dr. L. V. Zhigilei at University of Virginia.
J. Appl. Phys., 88, 1281-1298 (2000).

Motion of protein,
Courtesy of Dr. 
Bert de Groot at 
Max Planck 
institute 
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Goals of Molecular Dynamics
� MD simulations provide a molecular level picture of structure 

and dynamics � property/structure relationships

� Experiments often do not provide the molecular level 
information available from simulations

� Sometimes it is not possible to perform experiments on the 
problems of interest (extreme pressure, extreme 
temperature, etc)

� Simulators and experimentalists can have a synergistic 
relationship, leading to new insights into materials 
properties.
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Basic Algorithm
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� Lennard-Jones (L-J) potential model for argon:

�

� Bond energy: e ~ 0.01 eV (weak): low melting point
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� Each particle is a point of 
mass. The potential energy 
between particle i and j is

� The force acted on i by j is

� The total force acted on particle i is

� Equation of motion:

• Need initial and boundary conditions to solve.
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� It is usually not practical to simulate the full size of the real system which 
consists Avogardo’s number of particles. A finite simulation cell is often 
used with applying periodic boundary conditions. 

�

�

��

�

�

��

v

Periodic Boundary Conditions

v

Courtesy of Dr. Sylke Boyd 
at UMN
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� Free boundary 
condition
• On a free boundary, 

atoms lose their outer 
neighbors, and the 
forces are from their 
inner neighbors.

• Surface reconstruction 
• Appropriate for the 

confined direction of 
free-standing 
nanostructures: cross-
plane boundary of thin 
films, radial boundary of 
nanowires, etc

Other Boundary Conditions
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Integration: Verlet Algorithm
� Taylor expansion:
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Implementation
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� Start with initial positions and 
velocities of atoms

� Force

� Update momentum

� Update position

� Update force
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Other Important Settings for MD
� Time step

• One order of magnitude smaller than the period of the highest-
frequency vibrational mode - lattice dynamics calculation is useful 
beforehand!

• Typically can be in the order of 1-5 fs for common materials.

� Temperature control: scale the velocities

• Thermostats: Noose Hoover, Langevin, etc

� Initial positions: equilibrium lattice structure at T
� Initial velocities: small and random velocities, zero net 

momentum
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� 2.1 Molecular Dynamics Basics
� 2.2 The Green-Kubo Method
� 2.3 The Direct Method
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� Equilibrium method: no temperature gradient needed
• Using the fluctuation-dissipation signal of the system
• Domain size effect is easier to handle

� Non-equilibrium method: non-zero temperature gradient
• Fourier Law

• Approach 1: Apply a constant temperature gradient and calculate the 
resulted heat current

• Approach 2: Apply a constant heat flux and calculate the resulted 
temperature gradient

• Domain size effect is more significant.

Thermal Conductivity Calculation Methods

" dTq k
dx

= �
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� The heat current vector is given by

� For a pair potential, such as the LJ potential, the expression 
can be recast as:

• where v is the velocity vector of a particle, and rij and Fij are the inter-
particle separation vector and force vector between particles i and j.

� For multi-body potentials, see: Zheyong Fan et al., PRB 92, 
094301 (2015).

� �, ,i i i k i p i
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Equilibrium (Green-Kubo) Method M. S. Green, J. Chem. 
Phys. 22, 398 (1954). 
R. Kubo, J. Phys. Soc. 
Jpn. 12, 570 (1957).
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� In general, for anisotropic systems:

� For isotropic system, 
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� The heat current autocorrelation function is

• Where

� Implementation: 

Ensemble Average
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� Settings:
• Lennard-Jones potential
• T = 40 K
• Domain size: 6x6x6 unit cells
• Time step: 4 fs
• NPT: 0.4 ns; NVE: 4 ns
• Max. correlation time: 40 ps

� Thermal conductivity:
• kx = 0.398 W/m-K
• ky = 0.575 W/m-K
• kz = 0.642 W/m-K
• kave = 0.538 W/m-K
• (kexp = 0.56 W/m-K)    

(Touloukian et al., 1970)

� Repeat multiple times to 
reduce statistical errors

EMD on Solid Argon
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Exponential fitting of the HCACF
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� Single exponential 
fitting:

� Here t’s are the 
vibrational coherence 
times, or the effective 
phonon relaxation times.
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Applications of GK-MD in calculating k

B. Qiu and X. Ruan, 
Phys. Rev. B 80, 165203 (2009).

S. G. Volz and G. Chen, 
Phys. Rev. B 61, 2651 (2000). 

K. Esfarjani, G. Chen, and H. T. Stokes, 
Phys. Rev. B 84, 085204 (2011).

SW
Si

SW
Si

Morse
Bi2Te3

McGaughey and Kaviany, IJHMT 
47, 1783 (2004)

LJ 
Ar
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� The equilibrium (Green-Kubo) method do not usually show 
significant size effect – periodic boundary conditions helps.

Simulation Domain Size Effect

L. Sun and J.Y. Murthy, Appl. Phys. 
Lett. 89, 171719 (2006).

LJ Argon
McGaughey and Kaviany, 
PRB 71, 184305 (2004)

Silicon
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Uncertainty: HCACF and k Distributions of Ar

� tcorre, UL >> tp, eff for a good integration. Here 40 ps is sufficient.
� As ttotal increases, the HCACF and k profiles start to converge. 

Z.Y. Wang and X.L. 
Ruan, “Uncertainty 
quantification of 
thermal conductivities 
from equilibrium 
molecular dynamics 
simulations”, paper 
IMECE2016-68083. 
Also submitted to 
journal publication.
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A Universal Relation of the Uncertainty

� A universal relation of the relative uncertainty
� A long ttotal and short tcorre,UL will decrease σk/kave. However, a physical 

constrain is that tcorre, UL >> tp, eff

Z.Y. Wang and X.L. 
Ruan, “Uncertainty 
quantification of 
thermal conductivities 
from equilibrium 
molecular dynamics 
simulations”, paper 
IMECE2016-68083. 
Also submitted to 
journal publication.
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� 2.1 Molecular Dynamics Basics
� 2.2 The Green-Kubo Method
� 2.3 The Direct Method
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� Approach 1: The temperatures of heat source and sink are 
controlled using thermostats. The heat flux is calculated 
using

� Approach 2: The heat flux is controlled using velocity scaling, 
and the resulted temperature gradient is calculated from MD.

Direct Method
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Schelling, Phillpot, and Keblinski, PRB 65, 144306 (2002).
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A Few Things to Check

P.K. Schelling, S.R. Phillpot, and P. Keblinski, Physical Review B 65, 144306 (2002).

Linear temperature fitting                                                      effects of De
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� Domain size effects arise when the length of the simulation 
domain is not significantly longer than the phonon mean-free 
path.

� Casimir limit: because the atomic dynamics in the hot and 
cold slabs is altered by the simulation algorithm, the mean-
free-path is limited by the size of the system.

Domain Size Effect of NEMD

P.K. Schelling, S.R. Phillpot, and P. Keblinski, Physical Review B 65, 144306 (2002).
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� The effective mean free path &MD of the MD system is

• &�: intrinsic phonon mean free path of the bulk material
• L: simulation cell length

� The thermal conductivity

� Plot 1/k v.s. 1/L, the 
interception gives k for 
the bulk material.

Extrapolation Technique

1 1 1 1 4
/ 4M D L L& & &� �

= + = +

1 1 1 4
MD MDk L& &�

' = +

P.K. Schelling, S.R. Phillpot, and P. Keblinski, 
Physical Review B 65, 144306 (2002).
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Thermal Rectification in Asymmetric Structures

� For TR to occur in 
single materials:
• Asymmetric in 

geometry
• Lateral size smaller 

than the phonon 
mean free path

Wang, Vallabhaneni, Hu, Qiu, Chen, and 
Ruan, Nano Lett. 14, 592 (2014).
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Remarks
� Advantages of MD:

• Real space behavior – intuitive
• Easy to perform (LAMMPS)
• Can handle complicated structures: defects, boundary, interface, 

roughness, etc

� Disadvantages of MD:
• Classical nature (take caution when simulating below the Debye T)
• Interatomic potentials are only available for a small fraction of 

materials, high quality potentials are even rarer.

� Opportunities:
• Simulate larger-size systems: coarse grain MD?
• Develop high quality potentials for new materials
• Ab initio MD, tight-binding MD
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