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Outline

� Session I (1:30 PM – 3:15 PM)
1. Introduction (McGaughey)
2. MD simulation, Green Kubo, direct method (Ruan)
3. Harmonic lattice dynamics, spectral methods (Ruan)

� Session II (3:45 PM – 5:30 PM)
4. Anharmonic lattice dynamics, first principles (McGaughey)
5. Phonon-boundary and phonon-defect scattering (McGaughey)
6. Phonon-electron coupling and non-equilibrium (Ruan)
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� 3.1 Harmonic lattice dynamics and phonon 
dispersion

� 3.2 Phonon normal mode analysis
� 3.3 Phonon wave packet method
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� Planck distribution

� Stefan-Boltzmann Law

Thermal Radiation: Broad Band Photons 

Image of Robert A. Rohde / Global Warming Art
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Mode 1 Mode 2

MD
Trajectory

…
Γ X

Optical Mode

Heat Conduction: Broad Band Phonons
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Two-Atom Chain

� Equation of motion:

Lattice Constant, a
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� Assume a wave solution in the form

� Then the equations of motion becomes

� The homogeneous linear equations have a solution only if

Solution of the Wave Equation
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Dispersion Relation
� Group Velocity:

dK
dvg
w

=
w

Kittel, Introduction to 
Solid State Physics.
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or

� Define 

� So

Dynamical Matrix Approach
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Atomic Position Nomenclature in 3D
� An atom in unit cell n and at basis 

position . has an equilibrium 
position rn.

� Subscripts i and j denote direction
� Subscripts m and / denote the 

position of a different atom in the 
lattice (analogous to n and .)

� Perturbed expression for the 
potential � (like a Taylor series 
expansion)

0 because assumed zero potential and first 
derivative at the equilibrium position
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Equations of Motion
� The force on the atom at position n. along direction i can be 

expressed in terms of the spatial derivative of potential 
energy

� Atomic displacement s can be expressed as a Fourier wave

• The wave vector K is an important parameter (inversely proportional 
to wavelength)

• Wave frequency w gives the rate of vibration of the wave
� Substituting into the equation of motion, we find
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Dynamical Matrix and Dispersion Relation
� The dynamical matrix contains each “spring constant” 

• Second equality from translational invariance, and rp is defined as rm
– rn

� The euqation of motion becomes

� Where 1 is the Kronecker delta (identity matrix).
� The dispersion relation defines the relationship between the 

wave vector K and frequency w and emerges from the 
secular equation, 
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Phonon Dispersion of Silicon
� Phonon dispersion is typically 

plot along high symmetry lines in 
the first Brillouin zone.

X
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� 3.1 Harmonic lattice dynamics and phonon 
dispersion

� 3.2 Phonon normal mode analysis
� 3.3 Phonon wave packet method
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Phonon Normal Mode Analysis

Atomic velocity

References:
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Spectral and Accumulated k v.s. MFP

� Discretize MFP into bins
� For each phonon mode, 

find its MFP and assign it to 
a bin, add its spectral k to 
the spectral k of that bin.

� Accumulate the spectral k 
over MFP.

k-mesh in the 
phase space 
(BZ)

Henry and Chen, JCTN 5,1-12, (2008).

Yang and Dames, PRB 87, 
035437 (2013).
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Relaxation Time and Mean Free Path for Bi2Te3
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Wang, Qiu, McGaughey, Ruan, and Xu, J. Heat Transfer 135, 091102 (2013).
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Total phonon scattering rate for perturbed systems
� Small perturbation to bulk system: substrate, impurity, etc.
� Assumption: the perturbation little affects the phonon dispersion, but 

affects the phonon scattering rates.
� The total scattering rate is calculated for multiple phonon scattering 

mechanisms without touching the detailed interplay process.

Qiu and Ruan, Appl. Phys. 
Lett. 100, 193101 (2012).
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� Mean free path

� Spectral 
approach

� Gray approach

Spectral and Gray Approaches
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Thermal conductivity accumulation
Feng and Ruan, J Nanomater. 2014, 206370 (2014). Phonon mean 

free path in 
nanostructures

L needs to be 
comparable to 
or smaller than 
&n,k for size 
effect.

,

1 1 1
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Thermal conductivity accumulation: experiment

Minnich, Johnson, Schmidt, Esfarjani, 
Dresselhaus, Nelson, and Chen,
Phys. Rev. Lett. 107, 095901 (2011) Regner, Sellan, Su, Amon, McGaughey, 

Malen, Nature communications 4, 1640 
(2013)



College
of Engineering 54

Other Modal Analysis Techniques
� Modal Heat Flux Decomposition in NEMD: 

• Zhou, Zhang, Hu, PRB 92, 195204 (2015).
� Modal decomposition based on Green-Kubo

• Lv, Henry, New J. Phys. 18, 013028 (2016).
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Spectral Matthiessen's Rule revisited

� Spectral Matthiessen's Rule:
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Heat carriers:
phonons

Non-
metal

Impurities exist everywhere:  isotopes, SixGe1-x, PbTexSe1-x, Bi2Te3-xSex, etc. 
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Phonon-Impurity

�: phonon mode
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Total phonon scattering rate without and with impurity doping
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Phonon-impurity scattering rate
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Scattering rates and thermal conductivity

0.4% 42Si doped

Feng, Qiu, and Ruan, Phys. Rev. B. 92, 235206 (2015).



College
of Engineering 59

Coupling in Isotope-Doped Silicon

� � from ��
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Bulk 
Silicon 
300K

0.4% 42Si doped 0.4% - 2% 42Si doped

Feng, Qiu, and Ruan, Phys. 
Rev. B. 92, 235206 (2015).
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� Harmonic lattice dynamics and phonon dispersion
� Phonon normal mode analysis
� Phonon wave packet method



College
of Engineering 61

Phonon Wave-packet Method

2 2
0 0 0 1 0( ) exp[ ( )]exp[ ( ) / ]il i lu A k ik z z z z5 5&e 6= � � �

Displacement of the �th atom in the �th unit cell along the � direction

Amplitude of the wave-packet

Eigenvector of polarization � at wave vector center ��

Width of the wave-packet
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Phonon Wave-packet Method

References:
• Schelling, P. K., Phillpot, S. R., & Keblinski, P. 

(2002). Applied Physics Letters, 80(14), 2484.
• Sun, L., & Murthy, J. Y. (2010). Journal of Heat 

Transfer, 132(10), 102403.
• Lee, J., Varshney, V., Roy, A. K., & Farmer, B. 

L. (2011). The Journal of Chemical Physics, 
135(10), 104109.



College
of Engineering 63

Acknowledgements
� Former graduate students:

• PhD graduates: Prof. Hua Bao (Shanghai Jiao Tong University),  
Dr. Bo Qiu (Intel),  Prof. Yalin Dong (University of Akron),  Dr. 
Liangliang Chen (Western Digital),  Dr. Ajit Vallabhaneni
(Postdoc fellow at Gatech),  Dr. Xiawa Wu (Sentient Science), 
Prof. Yan Wang (University of Nevada at Reno), Kelly Rickey

• Seven MS graduates
• Visiting students: Prof. Run Hu (Huazhong University of 

Science and Technology), Wenjun Yao (PhD student at 
Tsinghua University)

� Former postdoctoral fellow/visiting scholars:
• Prof. Wenzhi Wu (Heilongjiang University), Prof. Shanglong Xu 

(University of Electronic Science and Technology), Prof. Bhat 
(University), Prof. Zhifeng Huang (Wuhan University)

� Collaborators:
• Xianfan Xu (Purdue), Timothy Fisher (Purdue), Bingyang Cao 

(Tsinghua), Jayathi Murthy (UCLA), Oleg Prezhdo (Rochester), 
Yong Chen (Purdue), Ajit Roy (AFRL), Yue Wu (Purdue).

� Sponsors: 

� Current group members:
• Julian Alberts (PhD)
• Prabudhya Chowdhury 

(PhD)
• Tianli Feng (PhD)
• Xiangyu Li (PhD)
• Zexi Lu (PhD)
• Jun Qiu (Postdoc)
• Jingjing Shi (PhD)
• Zuyuan Wang (PhD)


