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Outline
Session I
1.  Introduction (McGaughey)
2.  Harmonic lattice dynamics, MD simulation (Ruan)
3.  Green Kubo, direct method, spectral methods (Ruan)

Session II
4. Anharmonic lattice dynamics, first principles (McGaughey)
5. Phonon-boundary and phonon-defect scattering (McGaughey)
6. Phonon-electron coupling and non-equilibrium (Ruan)
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Phonon Formula for Thermal Conductivity

Boltzmann transport equation + Fourier law
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i :  indexes over all phonon modes
cv,i :  heat capacity         vg,i : group velocity
τ i: lifetime                     Λi: mean free path
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Transport and Scattering

Phonons scatter with: 
–  other phonons
–  grain boundaries, interfaces, 

surfaces
–  electrons
–  defects  (isotopes, vacancies, …)

McGaughey and Kaviany, PRB 71, 184305 (2005).
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Outline

1.  Force Constants, Phonons, and 
Thermal Conductivity

2.  First Principles Approach

3.  Impactful Research
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•  Energy conservation:

•  Translational invariance of the lattice:�

Phonon-Phonon Scattering

Two phonons can 
combine to form a third
(and vice-versa)

•  Interactions with > 3 phonons possible, �
rates increase with temperature

321 ωωω !!! =+

κ1 +κ2 =κ3 +G

Reciprocal lattice 
vector

1

2

3



8 

Lattice Dynamics on a Crystal Lattice
•  Building from the mass-spring system, include:

–  Motion in three-dimensions
–  More than nearest-neighbor interactions
–  Non-linear interactions
–  Periodic boundary conditions
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•  Expand the system potential energy as a Taylor series:
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Force Constant Calculation

•  From an empirical interatomic potential
–  Analytically
–  Numerically

•  From first-principles calculations
–  Density functional perturbation theory [Baroni et al., RMP 73, 515 (2001)]
–  Numerically

Significant work by David Broido and colleagues.
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Harmonic Force Constants
•  Dynamical matrix -> eigenvalue problem

–  Frequencies and mode shapes
–  Group velocities
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Wang et al., Eur. Phys. J. B 62, 381 (2008)
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Cubic Force Constants
•  Anharmonic + frequencies & mode shapes

–  RTA - > phonon lifetimes

–  BTE full solution (many flavors) -> scattering rates
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Quantum vs. Classical Statistics
     MD simulations are classical

–  High temperature limit of Bose-Einstein, x = ħω/kBT → 0
–  Equipartition of energy in a harmonic system

Quantum Classical
f 1/(ex-1) 1/x

cvV kB x2ex/(ex-1)2 kB
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Heat Capacity
•  Phonons are bosons, described by Bose-Einstein statistics
•  Energy of phonon mode i is
•  Heat capacity is
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LJ Crystal Self-Consistent Comparison

Turney et al., PRB 79, 075316 (2009)

•  Limited to low/medium temperatures
•  Cannot include disorder explicitly
•  Computational challenges for large unit cells



15 

Inclusion of Four-Phonon Processes

Feng and Ruan, PRB 93, 045202 (2016)



16 

Failure of Empirical Potentials: Dispersion

Eric Landry PhD thesis (CMU, 2009).
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Failure of Empirical Potentials: Thermal Conductivity

Broido et al., PRB 72 (2005) 014308.



18 

Outline

1.  Force Constants, Phonons, and 
Thermal Conductivity

2.  First Principles Approach

3.  Impactful Research
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Density Functional Theory
•  Approximate numerical solution to the many-body Schrödinger 

equation�
(bodies  = electrons and ions)

•  Theoretically and computationally complex �
(large number of degrees of freedom)

•  Expertise is needed to set up and run the calculations. 

•  Graduate students can write a molecular dynamics or harmonic 
lattice dynamics code in a one-semester class. �
(not possible for DFT)
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DFT -> Force Constants

•  Density functional perturbation theory or finite differences
–  Symmetry reduction, translational invariance

•  Harmonic: DFPT (standard), FD (convergence issues)

•  Anharmonic: DFPT (non-standard), FD (tractable)
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Si and Ge Dispersion from First Principles
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Si and Ge Thermal Conductivity from First Principles

Including isotope scattering
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Convergence (1)
•  DFT and DFPT calculations on 

isotopically pure silicon
–  Quantum Espresso

•  Thermal conductivity < 2%

•  Electron wave vector grid
–  Total energy ( < 0.2 mRy), 

lattice constant (< 0.001 A)
–  Converged at 8x8x8

•  Plane wave energy cutoff �
converged at 60 Ry

Jain and McGaughey, �
Comp. Mat. Sci. 110 (2015) 115.
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Convergence (2)
•  Phonons

–  8x8x8 wave vector grid for DFPT (harmonic force constants)
–  216 atom supercell (cubic force constants)
–  24x24x24 wave vector grid for thermal conductivity

•  Pseudopotential: Core electron model
–  Norm conserving, ultrasoft, PAW

•  Exchange correlation: Many-body interaction closure
–  LDA, PBE, PBEsol, PW91, BLYP
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Pseudopotential and Exchange Correlation
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Dispersion

Expts: Nillson and Nelin, PRB 6 (1972) 3777.
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Pseudopotential and Exchange Correlation

Our values: 127-148 W/m-K
Experiment: 153 W/m-K [Inyushkin, Phys. Stat. Sol. (c) 1 (2004) 2995]

Literature DFT: 132-155, 172 W/m-K

at 300 K
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Thermal �
Conductivity �
Accumulation
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Outline

1.  Force Constants, Phonons, and 
Thermal Conductivity

2.  First Principles Approach

3.  Impactful Research
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Extensive Work Across Many Materials Systems

Lindsay et al., PRB 87 (2013) 165201.
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Ultra-High Thermal Conductivity of BAs

Lindsay et al., PRL 111 (2013) 025901.
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Two Dimensional Materials

Origin of graphene’s high 
thermal conductivity.
Lindsay et al. PRB 82 (2010) 115427.

Anisotropic thermal conductivity 
in phosphorene.
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Jain and McGaughey, Sci. Rep. 5 (2015) 8501.
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Many Others…
•  Strain

–  Parrish et al., PRB 90 (2014) 235201
–  Mukhopadhyay et al., PRL 113 (2014) 025901

•  Electrons (next lecture)
–  Liao et al., PRL 114 (2015) 115901
–  Jain and McGaughey, PRB 93 (2016) 081206(R)
–  Wang et al., JAP 119 (2016) 225109.

•  BTE Methodology
–  Fugallo et al., PRB 88 (2013) 045430
–  Cepellotti and Marzari, PRX 109 (2016) 041013
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Advantages and Disadvantages

•  Naturally incorporate quantum statistics

•  Integrate with input from first principles calculations

•  Essentially the same framework for all materials

•  Thermal conductivity prediction limited by unit cell size, N
–  Scales as N4, N < 20

•  Anharmonicity typically to 3rd order
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Recommendations
•  Some codes freely available, but be careful!

–  GULP, Phonopy, ShengBTE, …
–  We write our own codes

•  Many subtle decisions to make
–  How to enforce energy conservation
–  Convergence/size effects
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Summary of Lecture 4

•  Phonon-phonon mean lifetimes from anharmonic lattice dynamics
–  Theoretical and computational challenges

•  Force constants from first principles
–  Better agreement with experiments �

compared to empirical potentials
–  But, there is still uncertainty!


