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Overview 
•  General overview of the MOOSE framework 
•  MOOSE tools for meso-scale modeling 
•  Finite Element Method (FEM) and its implementation 
•  Phase-field modeling 
•  Examples and applications 



Material Behavior 
•  A key objective of materials science is to understand the impact of 

microstructure on macroscale material behavior. 

•  An essential part of that is predicting the impact of microstructure 
evolution. 

Annealed Stainless Steel Cast Bronze Sintered UO2 Co-Al-W Superalloy Friction stir welded stainless steel 

Corrosion in stainless steel Micro-cracking in steel Irradiated UO2 fuel Hydride in Zircaloy 



Material Behavior is Multiphysics 
•  Material behavior is influenced by many different physics, for example: 
 

Mechanics 
•  Dislocations 
•  Cracking 
•  Stress-driven 
 Diffusion 

Chemistry 
•  Corrosion 
•  Oxidation 
•  Reactive  
 transport 

Electricity/Magnetism 
•  Electromigration 
•  Ferroelectricity 
•  Ferromagnetism 

Heat Conduction 
•  Species transport 
•  Melting 
•  Precipitation 



Material Behavior is Multiscale 
•  Material behavior at the atomistic and microscales drives macroscale 

response. 



Multiscale Modeling Approach 
•  Simulations at smaller scales inform the models at 

increasing length scales 

•  Identify important 
bulk mechanisms 

•  Determine bulk 
material 
parameters  

Atomic scale bulk 
DFT + MD 

•  Investigate role of idealized 
interfaces 

•  Determine interfacial properties 

Atomic scale microstructure MD 

Mesoscale models  

•  Predict and define 
microstructure 
evolution 

•  Determine effect of 
evolution on material 
properties 

Engineering 
scale 
simulation 

•  Predictive 
modeling at the 
engineering 
scale 

6 
nm µm mm 

Lengthscale 



Materials Modeling Requirements 
•  To model material behavior at the meso- and 

macroscales requires that we deal with its 
inherent complexity. 

•  A tool for modeling material behavior needs to: 
–  Easily handle multiple, tightly coupled physics 
–  Have tools for multiscale modeling 

•  It would also be nice if it 
–  Were simple to use and develop 
–  Took advantage of high performance computing 
–  Were free and open source 
–  Had a team of full time staff for development and 

support 
–  Had a strong user community 



Multiphysics Object Oriented Simulation Environment 

•  MOOSE is a finite-element, multiphysics framework that simplifies the 
development of advanced numerical applications. 

•  It provides a high-level interface to sophisticated nonlinear solvers and 
massively parallel computational capability. 

•  MOOSE has been used to model thermomechanics, neutronics, 
geomechanics, reactive transport, microstructure modeling, 
computational fluid dynamics, and more every day! 

•  It is open source and freely available at mooseframework.org 
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•  Tool for develop simulation tools that solve PDEs using FEM 

•  Spatial discretization with finite elements, where each variable can use a 
different element type, i.e. different shape functions 

•  Easy to couple multiple PDE 
•  Implicit or explicit time integration is available 
•  Dimension agnostic, same code can be used in 1- to 3-D 
•  Inherently parallel, solved with one to >10000 processors 
•  Provides access to mesh and time step adaptivity 
•  Easy simulation tool development 
•  Can read and write various mesh formats 
•  Strong user community 
•  Newton or Jacobian free solvers. 
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Mesh and Time Step Adaptivity 
•  Any model implemented with MOOSE has access to mesh and time 

step adaptivity 
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Mesh Adaptivity 
•  Requires no code development 
•  Refinement or coarsening is defined by 

a marker that be related to  
-  An error estimator 
-  Variable values 
-  Stipulated by some other model 

•  Error indicators include the 
-  Gradient jump indicator 
-  Flux jump indicator 
-  Laplacian jump indicator 
-  Analytical indicator 

Transient Time Step Adaptivity 
•  The time step in transient simulations 

can change with time 
•  Various time steppers exist to define dt: 

-  Defined by a function 
-  Adapts to maintain consistent solution 

behavior 
-  Adapts to maintain consistent solution 

time 
•  Users can write new time steppers 
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Mesoscale Modeling with the MOOSE framework 
•  All of the code required to easily create your own phase field 

application is in the open source MOOSE modules (MOOSE-PF). 

Framework 

Modules 

All of the code that forms 
the basis of the MOOSE 
framework 

Tensor Mechanics 
•  Linear elasticity 
•  Eigenstrains 
•  J2 Plasticity 
•  Crystal plasticity 
 

Phase Field 
•  Cahn-Hilliard and 

Allen-Cahn equations 
•  Free energy based 

development 
 

Heat Conduction 
•  Steady state 
•  Transient 
•  Locally varying 

thermal conductivity 
 
 



                                     Generic Phase Field Library 

•  Provides the tools necessary to develop phase field models using FEM. 

•  Base classes for solving Cahn Hilliard equations 
•  Direct solution 
•  Split solution 

•  Base classes for Allen-Cahn equations 
•  Grain growth model 
•  Grain remapping algorithm for improved efficiency 
•  Initial conditions 
•  Postprocessors for characterizing microstructure 

 
 
 
 
 
 
 
 
 
 
 
 



•  Provides the tools necessary for modeling mechanical deformation and 
stress at the mesoscale. 

•  Anisotropic elasticity tensors that can change spatially 
•  Linear elasticity 
•  Eigen strains 
•  Finite strain mechanics 

•  J2 plasticity 
•  Crystal plasticity 

 
 
 
 
 
 
 
 
 
 
 
 



•  Provides the tools necessary for modeling heat conduction and 
temperature gradients at the mesoscale. 

•  Steady state heat conduction 
•  Transient term 
•  Effective thermal conductivity calculation 
•  Spatially varying thermal conductivity 

 
 
 
 
 
 
 
 
 
 
 
 



•  Models the coevolution of microstructure and properties in reactor 
materials 

•  MARMOT is in use by researchers at laboratories and universities: 

Applicable to 
all materials 

Specifically 
for reactor 
materials 

MARMOT 

No physics 
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Overview of the Finite 
Element Method and 
Implementation 



Polynomial Fitting
To introduce the idea of finding coefficients to functions, let's consider
simple polynomial fitting.
In polynomial fitting (or interpolation) you have a set of points and you are
looking for the coefficients to a function that has the form: 

Where ,  and  are scalar coefficients and , ,  are "basis functions".
Find , , , etc. such that  passes through the points you are given.
More generally you are looking for: 

where the  are coefficients to be determined.
 is unique and interpolary if  is the same as the number of points

you need to fit.
Need to solve a linear system to find the coefficients.
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1. Define a set of points:

2. Create the linear system:

3. Solve for the coefficients:

, , 

4. Define the complete solution
function:

Example
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Example (cont.)
The coefficients themselves don't mean anything, by themselves they are
just numbers.
The solution is not the coefficients, but rather the function they create when
they are multiplied by their respective basis functions and summed.
The function  does go through the points we were given, but it is also
defined everywhere in between.
We can evaluate  at the point , for example, by computing:

where the  correspond to the coefficients in the solution vector, and the 
 are the respective functions.

Finally, note that the matrix consists of evaluating the functions at the
points.
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Finite Elements Simplified
A method for numerically approximating the solution to Partial Differential
Equations (PDEs).
Works by finding a solution function that is made up of "shape functions"
multiplied by coefficients and added together.
Just like in polynomial fitting, except the functions aren't typically as simple
as  (although they can be).
The Galerkin Finite Element method is different from finite difference and
finite volume methods because it finds a piecewise continuous function
which is an approximate solution to the governing PDE.
Just as in polynomial fitting you can evaluate a finite element solution
anywhere in the domain.
You do it the same way: by adding up "shape functions" evaluated at the
point and multiplied by their coefficient.
FEM is widely applicable for a large range of PDEs and domains.
It is supported by a rich mathematical theory with proofs about accuracy,
stability, convergence and solution uniqueness.
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Weak Form
Using FE to find the solution to a PDE starts with forming a "weighted
residual" or "variational statement" or "weak form".

We typically refer to this process as generating a Weak Form.
The idea behind generating a weak form is to give us some flexibility, both
mathematically and numerically.
A weak form is what you need to input into in order to solve a new problem.
Generating a weak form generally involves these steps:

1. Write down strong form of PDE.
2. Rearrange terms so that zero is on the right of the equals sign.
3. Multiply the whole equation by a "test" function .
4. Integrate the whole equation over the domain .
5. Integrate by parts (use the divergence theorem) to get the desired

derivative order on your functions and simultaneously generate
boundary integrals.
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Refresher: The divergence theorem
Transforms a volume integral into a surface integral:

In finite element calculations, for example with , the
divergence theorem implies:

We often use the following inner product notation to represent integrals
since it is more compact:

http://en.wikipedia.org/wiki/Divergence_theorem
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Example: Convection Diffusion
Write the strong form of the equation:

Rearrange to zero is on the right-hand side: 

Multiply by the test function :

Integrate over the domain :
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Example: Convection Diffusion (cont.)
Apply the divergence theorem to the diffusion term:

Write in inner product notation, from which C++ code will be based. Each
portion of the equation will inherit from an existing MOOSE type and the
unique aspects of your equations defined.
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Finite Element Shape Functions
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While the weak form is essentially
what you need for adding physics
to MOOSE, in traditional finite
element software more work is
necessary.
We need to discretize our weak
form and select a set of simple
"basis functions" amenable for
manipulation by a computer.

Copyright Oden, Becker, Carey 1981

Basis Functions and Shape Functions
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Shape Functions
Our discretized expansion of  takes on the following form:

The  here are called "basis functions"

These  form the basis for the "trial function", 

Analogous to the  we used earlier

The gradient of  can be expanded similarly:
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Shape Functions (cont.)
In the Galerkin finite element method, the same basis functions are used
for both the trial and test functions:

Substituting these expansions back into our weak form, we get:

The left-hand side of the equation above is what we generally refer to as the
 component of our "Residual Vector" and write as .
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Shape Functions (cont.)
Shape Functions are the functions that get multiplied by coefficients and
summed to form the solution.
Individual shape functions are finite pieces of the global basis functions.
They are analogous to the  functions from polynomial fitting (in fact, you
can use those as shape functions).
Typical shape function families: Lagrange, Hermite, Hierarchic, Monomial,
Clough-Toucher

MOOSE has support for all of these.
Lagrange shape functions are the most common.

They are interpolary at the nodes, i.e., the coefficients correspond to
the values of the functions at the nodes.
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Linear Lagrange Cubic Lagrange

Example 1D Shape Functions
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2D Lagrange Shape Functions
Example bi-quadratic basis functions defined on the Quad9 element:

 is associated to a "corner" node, it is zero on the opposite edges.
 is associated to a "mid-edge" node, it is zero on all other edges.
 is associated to the "center" node, it is symmetric and  on the

element.
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Numerical Implementation
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Numerical Integration
The only remaining non-discretized parts of the weak form are the
integrals.
We split the domain integral into a sum of integrals over elements:

Through a change of variables, the element integrals are mapped to

integrals over the "reference" elements .

 is the Jacobian of the map from the physical element to the reference
element.
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Numerical Integration (cont.)
To approximate the reference element integrals numerically, we use
quadrature (typically "Gaussian Quadrature"):

 is the spatial location of the th quadrature point and  is its

associated associated weight.

MOOSE handles multiplication by the Jacobian and the weight
automatically, thus your Kernel is only responsible for computing the 

part of the integrand.

Under certain common situations, the quadrature approximation is exact!

For example, in 1 dimension, Gaussian Quadrature can exactly
integrate polynomials of order  with  quadrature points.
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Numerical Integration (cont.)
Note that sampling  at the quadrature points yields:

And our weak form becomes:

The second sum is over boundary faces, .
MOOSE Kernels must provide each of the terms in square brackets
(evaluated at  or  as necessary).
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Newton's Method
We now have a nonlinear system of equations,

to solve for the coefficients .

Newton's method has good convergence properties, we use it to solve this
system of nonlinear equations.

Newton's method is a "root finding" method: it finds zeros of nonlinear
equations.
Newton's Method in "Update Form" for finding roots of the scalar equation 

,  is given by

77 / 476



Newton's Method (cont.)
We don't have just one scalar equation: we have a system of nonlinear
equations.

This leads to the following form of Newton's Method:

Where  is the Jacobian matrix evaluated at the current iterate:

Note that:
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Newton for a Simple Equation
Consider the convection-diffusion equation with nonlinear , , and :

The  component of the residual vector is:
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Newton for a Simple Equation (cont.)
Using the previously-defined rules for  and , the  entry of the

Jacobian is then:

Note that even for this "simple" equation, the Jacobian entries are

nontrivial: they depend on the partial derivatives of , , and , which may
be difficult or time-consuming to compute analytically.

In a multiphysics setting with many coupled equations and complicated
material properties, the Jacobian might be extremely difficult to determine.
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Chain Rule
On the previous slide, the term  was used, where  was a nonlinear

forcing function.

The chain rule allows us to write this term as

If a functional form of  is known, e.g. , this formula implies
that its Jacobian contribution is given by
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Jacobian Free Newton Krylov
 is a linear system solved during each Newton step.

For simplicity, we can write this linear system as , where:

We employ an iterative Krylov method (e.g. GMRES) to produce a sequence
of iterates , 

 and  remain fixed during the iterative process.
The "linear residual" at step  is defined as

MOOSE prints the norm of this vector, , at each iteration, if you set
print_linear_residuals = true in the Outputs block.

The "nonlinear residual" printed by MOOSE is .

82 / 476



Jacobian Free Newton Krylov (cont.)
By iterate , the Krylov method has constructed the subspace

Different Krylov methods produce the  iterates in different ways:

Conjugate Gradients:  orthogonal to .
GMRES/MINRES:  has minimum norm for  in .
Biconjugate Gradients:  is orthogonal to 

 is never explicitly needed to construct the subspace, only the action of 
on a vector is required.
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Jacobian Free Newton Krylov (cont.)
This action can be approximated by:

This form has many advantages:

No need to do analytic derivatives to form 
No time needed to compute  (just residual computations)
No space needed to store 
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Wrap Up
The Finite Element Method is a way of numerically approximating the
solution of PDEs.
Just like polynomial fitting, FEM finds coefficients for basis functions.
The "solution" is the combination of the coefficients and the basis functions,
and the solution can be sampled anywhere in the domain.
We compute integrals numerically using quadrature.
Newton's Method provides a mechanism for solving a system of nonlinear
equations.
The Jacobian Free Newton Krylov (JFNK) method allows us to avoid explicitly
forming the Jacobian matrix while still computing its "action".
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Code Implementation 
•  FEM can be implemented by hand, but can be fairly complicated. 
•  Many commercial FEM codes exist, but they are expensive and are often not 

very flexible for solving multiphysics problems. 
•  Open source options for FEM exist 
•  Will demonstrate solving this thermo/mechanical system in MOOSE 

RT =

Z

⌦
krT ·r�i dV �

Z

⌦
q�i dV �

Z

�⌦
krT · ~ndA_k[_qp] * _grad_u[_qp] * _grad_phi[_qp][_j]


Ru =

Z

⌦
� ·r�i dV �

Z

�⌦
� · ~ndA_stress[_qp] * _grad_phi[_qp][_j]


Equations Code 



•  Microstructure described by a set of continuous variables… 
–  Non-Conserved Order Parameters 

 

 
–  Conserved Concentrations 

 

•  The variables evolve to minimize a functional defining the free energy 
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solidification (dendrite growth) 
phase transformations 

grain growth/coarsening 
crack growth 

Phase Field Has Been Used in Many Areas 

Vesicle membranes, with model 
(right) and experiment (left) •  The phase field method is our method of choice because it can be: 

-  Easily coupled to other physics such as mechanics or heat conduction 
-  Quantitative and can represent real materials 



Phase Field Documentation 
•  Documentation for the phase field module is found on the 

mooseframework.org wiki: 
  

–  http://mooseframework.org/wiki/PhysicsModules/PhaseField/ 
 



Examples 
•  Example input files for MOOSE-PF can be found in the examples 

directory in each project folder. 
–  These are midsized 2D problems that run well on four processors 

•  The tests can serve as additional examples 
–  There are many tests for the various components of MOOSE  
–  Each test runs in less then 2 seconds on one processor 



The Phase Field Equations 
•  Non-conserved variables (phases, grains, etc.) are evolved using an 

Allen-Cahn (aka Ginzburg-Landau) type equation: 

•  Conserved variables are evolved using a Cahn-Hilliard type equation: 

•  Both equations are functions of variational derivatives of a functional 
defining the free energy of the system in terms of the variables 
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Variational Derivative 

δF
δc

=
∂f
∂c
−∇⋅

∂f
∂∇c

The functional derivative (or variational derivative) relates a 
change in a functional to a change in a function that the 
functional depends on. 
 Wikipedia, “Functional derivative” 

•  Derivative with respect to the gradient! 
•  Gradient energy term in phase field (very few functional forms) 
•  Bulk free energy (contains the thermodynamics of the system) 

–  Simple partial derivative 

F = f (r,c,∇c)dV∫
F  total free energy 
f  free energy density 



Phase Field Implementation in MOOSE 
•  The kernels required to solve the phase field equations have been 

implemented in the phase field module 
•  In general, a developer will not need to change the kernels but simply 

use the kernels that have already been implemented 
•  New models are implemented by defining the free energy and mobility 

with their derivatives in material objects. 



Derivative Function Materials 
•  Each MOOSE Material class can provide multiple Material Properties 

 

•  A Derivative Function Material is a MOOSE Material class that provides a well defined 
set of Material Properties 
 

–  A function value, stored in the material property F (the f_name of the Material) 
–  All derivatives of F up to a given order with respect to the non-linear variables F depends on 

 

•  The derivatives are regular Material Properties with an enforced naming convention 
 

–  Example F, dF/dc, d^2F/dc^2, dF/deta, d^2F/dcdeta … 
–  You don’t need to know the property names besides F, unless you want to look at them in the 

output! 
 

•  Recap:  
Each Derivative Function Material provides one Function together with its derivatives! 
 

•  That function can be a Free Energy Density, a Mobility, or whatever you may need. 



Solving the Allen-Cahn Equation 
•  After taking the variational derivative, the strong form of the Allen-Cahn 

residual equation is 

•  Each piece of the weak form of the residual equation has been 
implemented in a kernel: 

•  Parameters must be defined in a material object 
•  The free energy density and its derivatives are defined in a  

Derivative Function Material 
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Solving the Cahn-Hilliard Equation 
•  Due to the fourth-order derivative, solving the Cahn-Hilliard equation 

can be hard. In MOOSE there are two available approaches 
–  Residual: 

–  We can put this in weak form:  

 

–  But, solving this residual requires higher order elements 

•  Another option is to split the equation into two: 

 
 

–  The split form can be solved with first-order elements.  
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The Direct Solution of the Cahn-Hilliard Equation 
•  Each piece of the weak form of the Cahn-Hilliard residual equation has 

been implemented in a kernel 

•  Parameters must be defined in a material object 
 

•  The free energy density and its derivatives are defined in an energy 
material object (e.g. DerivativeParsedMaterial) 

•  Mobilities can also depend on non-linear variables M(c) and can be 
supplied through Derivative Function Materials 

•  Due to the second order derivative, third order Hermite elements must 
be used to discretize the variables 
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TimeDerivative CHInterface CahnHilliard 



The Split Solution of the Cahn-Hilliard Equation 
•  The weak form of the split Cahn-Hilliard residual equation has also 

been implemented in kernels: 

•  Parameters must be defined in a material object 

•  The free energy density and its derivatives are defined in an energy 
material object (as with the direct solve, making it easy to switch between the two) 

•  Residuals are reversed to improve convergence 
(CoupledTimeDerivative) 

CoupledTimeDerivative SplitCHWRes 

SplitCHParsed 
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Cahn-Hilliard Solution 
•  We have done a quantitative comparison between the direct and the 

split solutions of the Cahn-Hilliard equation.  
–  The split with 1st order elements is the most efficient. 
–  The direct solution has the least error. 

•  However, practically speaking the split is often the best choice, since 
our simulations can be computationally expensive. 
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Simple Phase Field Model Development 
•  As stated above, the microstructure evolves to minimize the free energy 

•  Thus, the free energy functional is the major piece of the model 

•  Phase field model development is modular, with all development focused 
around the free energy 

31 

Free Energy Density Material 

fbulk = 1/4*(1 + c)^2*(1 – c)^2 
dfbulk/dc     = c^3 – c 
d^2fbulk/dc^2 = 3*c^2 – 1 
d^3fbulk/dc^3 = 6*c 

Free energy: 

Differential 
equations: 

Phase field models that are not based on a free energy can be implemented 
using normal MOOSE syntax 
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Derivative Function Materials 
•  The free energy and its derivatives can be defined in materials classes in four 

different ways: 
–  The derivatives can be defined directly by the user, by inheriting from 
DerivativeFunctionMaterialBase 

–  The derivatives can be calculated automatically, with the free energy defined in the 
input file using DerivativeParsedMaterial 

–  The derivatives can be calculated automatically, with the free energy hard coded in a 
material object (ExpressionBuilder) 

–  CALPHAD free energies (only for simple models now)  

•  A derivative material has an f_name (the function name) 

•  Property names of the derivatives are constructed automatically 
(using the value of f_name according to fixed rules set in the  
DerivativeMaterialPropertyNameInterface class) 

•  Add Derivative Function Materials using the DerivativeSumMaterial 
(sums function values and derivatives)  
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Automatic Free Energy Differentiation 
•  To simplify development even more, you can only enter the free energy 

functional and all derivatives are automatically evaluated analytically 

[Materials] 
 [./FreeEnergy] 
    type = DerivativeParsedMaterial 
    block = 0 
    # name of the free energy function 
    f_name = fbulk 
    # vector of non-linear variables  
    args = ’c’ 
    # Material properties. 
    material_property_names = ’W’ 
    # Free energy functional 
    function = ‘W*(1+c)^2*(1-c)^2’ 
  [../] 
[] 
 

[Materials] 
 [./FreeEnergy] 
    type = DerivativeParsedMaterial 
    block = 0 
    # name of the free energy function 
    f_name = fbulk 
    # vector of non-linear variables  
    args = ’gr0 gr1’ 
    # Material properties. 
    material_property_names = ’mu g’ 
    # Free energy functional 
    function = 'mu*(gr0^4/4 - gr0^2/2 + 
gr1^4/4 - gr1^2/2 + g*gr0^2*gr1^2)' 
  [../] 
[] 
 

+ Cahn-Hilliard + Allen-Cahn 



Automatic Differentiation 
Symbolic differentiation of free energy 
expressions 
 

•  Based on FunctionParser  
http://warp.povusers.org/FunctionParser/ 
to allow runtime specification of 
mathematical expressions 

•  Mathematical expressions  
è Tree data structures 

•  Recursively apply differentiation  
rules starting at the root of the tree 

•  Eliminate source of human error 
•  Conserve developer time 



Performance considerations 
•  Aren’t interpreted functions slower than natively compiled functions? 

•  Just In Time (JIT) compilation 
for FParser functions 

•  Parsed functions (automatic 
differentiation) now as fast as 
hand coded functions 

•  Makes the rapid Phase Field 
model development more 
attractive 

•  ~80ms compile time per 
function. Results cached. 
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Examples and Applications 



•  Multiscale investigation of void migration in a temperature gradient 
(Soret effect): 

•  MD studies identify the 
diffusion mechanisms 
active in the migration 
of nanovoids 

•  The migration of larger voids is modeled with MARMOT 
with surface and lattice diffusion 

Atomistic Mesoscale 

From Desai (2009) 

MARMOT Example: Void Migration 

Void migration 
Movie 

Zhang et al., Computational Materials Science, 56 (2012) 161-5 
37 



Particle and Pore Pinning 
•  Defects such as pores or precipitates on GBs impede the GB 

migration by applying an opposing force.  

•  To account for the interaction of GBs with a particle defined by the 
variable c, we add a term to the free energy 

•  The term is implemented in the kernel ACGBPoly 

•  It is activated using the simplified grain growth syntax by adding a 
coupled variable c 

f(c, ⌘i) =
X
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[Kernels] 
  [./PolycrystalKernel] 
    c = c 
  [../] 
[] 



Particle and Pore Pinning 
•  We verified this model by simulating an identical system using MD 

simulation and the phase field model 
–  10 He bubbles (r = 6 nm) in Mo bicrystal (R = 20 nm) at 2700 K.  
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• MARMOT can be used in both hierarchical 
and concurrent coupling 

Operating 
condition 

range 

Bulk material 
properties 

Operating 
conditions 

• Codes are run simultaneously and 
information is passed back and forth. 

• Captures interaction between the scales 
• Can locate important coupled behaviors 
• More computationally expensive 

Concurrent coupling 

Develop model 

Coupling to Larger Length-Scales 

Hierarchical coupling 
• Lower length-scale models are run separately to 

construct materials models. 
• Macroscale simulations are efficient. 



Passing analytical model into BISON 

k =
κGBκp

A + BT + CT 2 + Cvcv + Cici + Cgcg



Direct coupling with BISON 

k =
κGBκp

A + BT + CT 2 + Cvcv + Cici + Cgcg



Thank you! 
•  For more information, please see http://mooseframework.org 
•  Github repository: https://github.com/idaholab/moose 
•  3 day training workshops at INL and other locations (keep an eye on 

the website for dates and locations) 
•  Mailing list: to subscribe, send an email to  

moose-users+subscribe@googlegroups.com 
or see 
http://mooseframework.org/getting-started/  


