
w
w

w
.in

l.g
ov

Overview of the MOOSE Framework
and Applications to Materials
Science

Larry Aagesen, Yongfeng Zhang, Daniel
Schwen, Xianming Bai, Pritam Chakraborty,
Bulent Biner, Jianguo Yu, Chao Jiang, Ben
Beeler, Wen Jiang, Karim Ahmed

Paul Millett

Michael Tonks

Overview
•  General overview of the MOOSE framework
•  MOOSE tools for meso-scale modeling
•  Finite Element Method (FEM) and its implementation
•  Phase-field modeling
•  Examples and applications

Material Behavior
•  A key objective of materials science is to understand the impact of

microstructure on macroscale material behavior.

•  An essential part of that is predicting the impact of microstructure
evolution.

Annealed Stainless Steel Cast Bronze Sintered UO2 Co-Al-W Superalloy Friction stir welded stainless steel

Corrosion in stainless steel Micro-cracking in steel Irradiated UO2 fuel Hydride in Zircaloy

Material Behavior is Multiphysics
•  Material behavior is influenced by many different physics, for example:

Mechanics
•  Dislocations
•  Cracking
•  Stress-driven
 Diffusion

Chemistry
•  Corrosion
•  Oxidation
•  Reactive
 transport

Electricity/Magnetism
•  Electromigration
•  Ferroelectricity
•  Ferromagnetism

Heat Conduction
•  Species transport
•  Melting
•  Precipitation

Material Behavior is Multiscale
•  Material behavior at the atomistic and microscales drives macroscale

response.

Multiscale Modeling Approach
•  Simulations at smaller scales inform the models at

increasing length scales

•  Identify important
bulk mechanisms

•  Determine bulk
material
parameters

Atomic scale bulk
DFT + MD

•  Investigate role of idealized
interfaces

•  Determine interfacial properties

Atomic scale microstructure MD

Mesoscale models

•  Predict and define
microstructure
evolution

•  Determine effect of
evolution on material
properties

Engineering
scale
simulation

•  Predictive
modeling at the
engineering
scale

6
nm µm mm

Lengthscale

Materials Modeling Requirements
•  To model material behavior at the meso- and

macroscales requires that we deal with its
inherent complexity.

•  A tool for modeling material behavior needs to:
–  Easily handle multiple, tightly coupled physics
–  Have tools for multiscale modeling

•  It would also be nice if it
–  Were simple to use and develop
–  Took advantage of high performance computing
–  Were free and open source
–  Had a team of full time staff for development and

support
–  Had a strong user community

Multiphysics Object Oriented Simulation Environment

•  MOOSE is a finite-element, multiphysics framework that simplifies the
development of advanced numerical applications.

•  It provides a high-level interface to sophisticated nonlinear solvers and
massively parallel computational capability.

•  MOOSE has been used to model thermomechanics, neutronics,
geomechanics, reactive transport, microstructure modeling,
computational fluid dynamics, and more every day!

•  It is open source and freely available at mooseframework.org

8

•  Tool for develop simulation tools that solve PDEs using FEM

•  Spatial discretization with finite elements, where each variable can use a
different element type, i.e. different shape functions

•  Easy to couple multiple PDE
•  Implicit or explicit time integration is available
•  Dimension agnostic, same code can be used in 1- to 3-D
•  Inherently parallel, solved with one to >10000 processors
•  Provides access to mesh and time step adaptivity
•  Easy simulation tool development
•  Can read and write various mesh formats
•  Strong user community
•  Newton or Jacobian free solvers.

9

Mesh and Time Step Adaptivity
•  Any model implemented with MOOSE has access to mesh and time

step adaptivity

10

Mesh Adaptivity
•  Requires no code development
•  Refinement or coarsening is defined by

a marker that be related to
-  An error estimator
-  Variable values
-  Stipulated by some other model

•  Error indicators include the
-  Gradient jump indicator
-  Flux jump indicator
-  Laplacian jump indicator
-  Analytical indicator

Transient Time Step Adaptivity
•  The time step in transient simulations

can change with time
•  Various time steppers exist to define dt:

-  Defined by a function
-  Adapts to maintain consistent solution

behavior
-  Adapts to maintain consistent solution

time
•  Users can write new time steppers

10−3 10−1 101 103

10−3

10−1

101

Time

dt

Mesoscale Modeling with the MOOSE framework
•  All of the code required to easily create your own phase field

application is in the open source MOOSE modules (MOOSE-PF).

Framework

Modules

All of the code that forms
the basis of the MOOSE
framework

Tensor Mechanics
•  Linear elasticity
•  Eigenstrains
•  J2 Plasticity
•  Crystal plasticity

Phase Field
•  Cahn-Hilliard and

Allen-Cahn equations
•  Free energy based

development

Heat Conduction
•  Steady state
•  Transient
•  Locally varying

thermal conductivity

 Generic Phase Field Library

•  Provides the tools necessary to develop phase field models using FEM.

•  Base classes for solving Cahn Hilliard equations
•  Direct solution
•  Split solution

•  Base classes for Allen-Cahn equations
•  Grain growth model
•  Grain remapping algorithm for improved efficiency
•  Initial conditions
•  Postprocessors for characterizing microstructure

•  Provides the tools necessary for modeling mechanical deformation and
stress at the mesoscale.

•  Anisotropic elasticity tensors that can change spatially
•  Linear elasticity
•  Eigen strains
•  Finite strain mechanics

•  J2 plasticity
•  Crystal plasticity

•  Provides the tools necessary for modeling heat conduction and
temperature gradients at the mesoscale.

•  Steady state heat conduction
•  Transient term
•  Effective thermal conductivity calculation
•  Spatially varying thermal conductivity

•  Models the coevolution of microstructure and properties in reactor
materials

•  MARMOT is in use by researchers at laboratories and universities:

Applicable to
all materials

Specifically
for reactor
materials

MARMOT

No physics

w
w

w
.in

l.g
ov

Overview of the Finite
Element Method and
Implementation

Polynomial Fitting
To introduce the idea of finding coefficients to functions, let's consider
simple polynomial fitting.
In polynomial fitting (or interpolation) you have a set of points and you are
looking for the coefficients to a function that has the form:

Where , and are scalar coefficients and , , are "basis functions".
Find , , , etc. such that passes through the points you are given.
More generally you are looking for:

where the are coefficients to be determined.
 is unique and interpolary if is the same as the number of points

you need to fit.
Need to solve a linear system to find the coefficients.

56 / 476

1. Define a set of points:

2. Create the linear system:

3. Solve for the coefficients:

, ,

4. Define the complete solution
function:

Example

57 / 476

Example (cont.)
The coefficients themselves don't mean anything, by themselves they are
just numbers.
The solution is not the coefficients, but rather the function they create when
they are multiplied by their respective basis functions and summed.
The function does go through the points we were given, but it is also
defined everywhere in between.
We can evaluate at the point , for example, by computing:

where the correspond to the coefficients in the solution vector, and the
 are the respective functions.

Finally, note that the matrix consists of evaluating the functions at the
points.

58 / 476

Finite Elements Simplified
A method for numerically approximating the solution to Partial Differential
Equations (PDEs).
Works by finding a solution function that is made up of "shape functions"
multiplied by coefficients and added together.
Just like in polynomial fitting, except the functions aren't typically as simple
as (although they can be).
The Galerkin Finite Element method is different from finite difference and
finite volume methods because it finds a piecewise continuous function
which is an approximate solution to the governing PDE.
Just as in polynomial fitting you can evaluate a finite element solution
anywhere in the domain.
You do it the same way: by adding up "shape functions" evaluated at the
point and multiplied by their coefficient.
FEM is widely applicable for a large range of PDEs and domains.
It is supported by a rich mathematical theory with proofs about accuracy,
stability, convergence and solution uniqueness.

59 / 476

Weak Form
Using FE to find the solution to a PDE starts with forming a "weighted
residual" or "variational statement" or "weak form".

We typically refer to this process as generating a Weak Form.
The idea behind generating a weak form is to give us some flexibility, both
mathematically and numerically.
A weak form is what you need to input into in order to solve a new problem.
Generating a weak form generally involves these steps:

1. Write down strong form of PDE.
2. Rearrange terms so that zero is on the right of the equals sign.
3. Multiply the whole equation by a "test" function .
4. Integrate the whole equation over the domain .
5. Integrate by parts (use the divergence theorem) to get the desired

derivative order on your functions and simultaneously generate
boundary integrals.

60 / 476

Refresher: The divergence theorem
Transforms a volume integral into a surface integral:

In finite element calculations, for example with , the
divergence theorem implies:

We often use the following inner product notation to represent integrals
since it is more compact:

http://en.wikipedia.org/wiki/Divergence_theorem

61 / 476

Example: Convection Diffusion
Write the strong form of the equation:

Rearrange to zero is on the right-hand side:

Multiply by the test function :

Integrate over the domain :

62 / 476

Example: Convection Diffusion (cont.)
Apply the divergence theorem to the diffusion term:

Write in inner product notation, from which C++ code will be based. Each
portion of the equation will inherit from an existing MOOSE type and the
unique aspects of your equations defined.

63 / 476

Finite Element Shape Functions

64 / 476

While the weak form is essentially
what you need for adding physics
to MOOSE, in traditional finite
element software more work is
necessary.
We need to discretize our weak
form and select a set of simple
"basis functions" amenable for
manipulation by a computer.

Copyright Oden, Becker, Carey 1981

Basis Functions and Shape Functions

66 / 476

Shape Functions
Our discretized expansion of takes on the following form:

The here are called "basis functions"

These form the basis for the "trial function",

Analogous to the we used earlier

The gradient of can be expanded similarly:

67 / 476

Shape Functions (cont.)
In the Galerkin finite element method, the same basis functions are used
for both the trial and test functions:

Substituting these expansions back into our weak form, we get:

The left-hand side of the equation above is what we generally refer to as the
 component of our "Residual Vector" and write as .

68 / 476

Shape Functions (cont.)
Shape Functions are the functions that get multiplied by coefficients and
summed to form the solution.
Individual shape functions are finite pieces of the global basis functions.
They are analogous to the functions from polynomial fitting (in fact, you
can use those as shape functions).
Typical shape function families: Lagrange, Hermite, Hierarchic, Monomial,
Clough-Toucher

MOOSE has support for all of these.
Lagrange shape functions are the most common.

They are interpolary at the nodes, i.e., the coefficients correspond to
the values of the functions at the nodes.

69 / 476

Linear Lagrange Cubic Lagrange

Example 1D Shape Functions

70 / 476

2D Lagrange Shape Functions
Example bi-quadratic basis functions defined on the Quad9 element:

 is associated to a "corner" node, it is zero on the opposite edges.
 is associated to a "mid-edge" node, it is zero on all other edges.
 is associated to the "center" node, it is symmetric and on the

element.

71 / 476

Numerical Implementation

72 / 476

Numerical Integration
The only remaining non-discretized parts of the weak form are the
integrals.
We split the domain integral into a sum of integrals over elements:

Through a change of variables, the element integrals are mapped to

integrals over the "reference" elements .

 is the Jacobian of the map from the physical element to the reference
element.

74 / 476

Numerical Integration (cont.)
To approximate the reference element integrals numerically, we use
quadrature (typically "Gaussian Quadrature"):

 is the spatial location of the th quadrature point and is its

associated associated weight.

MOOSE handles multiplication by the Jacobian and the weight
automatically, thus your Kernel is only responsible for computing the

part of the integrand.

Under certain common situations, the quadrature approximation is exact!

For example, in 1 dimension, Gaussian Quadrature can exactly
integrate polynomials of order with quadrature points.

75 / 476

Numerical Integration (cont.)
Note that sampling at the quadrature points yields:

And our weak form becomes:

The second sum is over boundary faces, .
MOOSE Kernels must provide each of the terms in square brackets
(evaluated at or as necessary).

76 / 476

Newton's Method
We now have a nonlinear system of equations,

to solve for the coefficients .

Newton's method has good convergence properties, we use it to solve this
system of nonlinear equations.

Newton's method is a "root finding" method: it finds zeros of nonlinear
equations.
Newton's Method in "Update Form" for finding roots of the scalar equation

, is given by

77 / 476

Newton's Method (cont.)
We don't have just one scalar equation: we have a system of nonlinear
equations.

This leads to the following form of Newton's Method:

Where is the Jacobian matrix evaluated at the current iterate:

Note that:

78 / 476

Newton for a Simple Equation
Consider the convection-diffusion equation with nonlinear , , and :

The component of the residual vector is:

79 / 476

Newton for a Simple Equation (cont.)
Using the previously-defined rules for and , the entry of the

Jacobian is then:

Note that even for this "simple" equation, the Jacobian entries are

nontrivial: they depend on the partial derivatives of , , and , which may
be difficult or time-consuming to compute analytically.

In a multiphysics setting with many coupled equations and complicated
material properties, the Jacobian might be extremely difficult to determine.

80 / 476

Chain Rule
On the previous slide, the term was used, where was a nonlinear

forcing function.

The chain rule allows us to write this term as

If a functional form of is known, e.g. , this formula implies
that its Jacobian contribution is given by

81 / 476

Jacobian Free Newton Krylov
 is a linear system solved during each Newton step.

For simplicity, we can write this linear system as , where:

We employ an iterative Krylov method (e.g. GMRES) to produce a sequence
of iterates ,

 and remain fixed during the iterative process.
The "linear residual" at step is defined as

MOOSE prints the norm of this vector, , at each iteration, if you set
print_linear_residuals = true in the Outputs block.

The "nonlinear residual" printed by MOOSE is .

82 / 476

Jacobian Free Newton Krylov (cont.)
By iterate , the Krylov method has constructed the subspace

Different Krylov methods produce the iterates in different ways:

Conjugate Gradients: orthogonal to .
GMRES/MINRES: has minimum norm for in .
Biconjugate Gradients: is orthogonal to

 is never explicitly needed to construct the subspace, only the action of
on a vector is required.

83 / 476

Jacobian Free Newton Krylov (cont.)
This action can be approximated by:

This form has many advantages:

No need to do analytic derivatives to form
No time needed to compute (just residual computations)
No space needed to store

84 / 476

Wrap Up
The Finite Element Method is a way of numerically approximating the
solution of PDEs.
Just like polynomial fitting, FEM finds coefficients for basis functions.
The "solution" is the combination of the coefficients and the basis functions,
and the solution can be sampled anywhere in the domain.
We compute integrals numerically using quadrature.
Newton's Method provides a mechanism for solving a system of nonlinear
equations.
The Jacobian Free Newton Krylov (JFNK) method allows us to avoid explicitly
forming the Jacobian matrix while still computing its "action".

85 / 476

Code Implementation
•  FEM can be implemented by hand, but can be fairly complicated.
•  Many commercial FEM codes exist, but they are expensive and are often not

very flexible for solving multiphysics problems.
•  Open source options for FEM exist
•  Will demonstrate solving this thermo/mechanical system in MOOSE

RT =

Z

⌦
krT ·r�i dV �

Z

⌦
q�i dV �

Z

�⌦
krT · ~ndA_k[_qp] * _grad_u[_qp] * _grad_phi[_qp][_j]

Ru =

Z

⌦
� ·r�i dV �

Z

�⌦
� · ~ndA_stress[_qp] * _grad_phi[_qp][_j]

Equations Code

•  Microstructure described by a set of continuous variables…
–  Non-Conserved Order Parameters

–  Conserved Concentrations

•  The variables evolve to minimize a functional defining the free energy

0

1

η5

η2

λ

η7

η5

η1

η8

η3
η2

η4

Atomic Scale Meso Scale

void

0

1

Cv

void

The Phase Field Method

@⌘j
@t

= �L
�F

�⌘j

@ci
@t

= r ·
✓
M(ci)r

�F

�ci

◆

solidification (dendrite growth)
phase transformations

grain growth/coarsening
crack growth

Phase Field Has Been Used in Many Areas

Vesicle membranes, with model
(right) and experiment (left) •  The phase field method is our method of choice because it can be:

-  Easily coupled to other physics such as mechanics or heat conduction
-  Quantitative and can represent real materials

Phase Field Documentation
•  Documentation for the phase field module is found on the

mooseframework.org wiki:

–  http://mooseframework.org/wiki/PhysicsModules/PhaseField/

Examples
•  Example input files for MOOSE-PF can be found in the examples

directory in each project folder.
–  These are midsized 2D problems that run well on four processors

•  The tests can serve as additional examples
–  There are many tests for the various components of MOOSE
–  Each test runs in less then 2 seconds on one processor

The Phase Field Equations
•  Non-conserved variables (phases, grains, etc.) are evolved using an

Allen-Cahn (aka Ginzburg-Landau) type equation:

•  Conserved variables are evolved using a Cahn-Hilliard type equation:

•  Both equations are functions of variational derivatives of a functional
defining the free energy of the system in terms of the variables

F =

Z

V

0

@f
loc

(c
i

, ⌘
j

, ..., T) + E
d

+
X

i


i

2
(rc

i

)2 +
X

j


j

2
(r⌘

j

)2

1

A dV

Local energy Gradient energy

@⌘j
@t

= �L
�F

�⌘j

@ci
@t

= r ·
✓
M(ci)r

�F

�ci

◆

Variational Derivative

δF
δc

=
∂f
∂c
−∇⋅

∂f
∂∇c

The functional derivative (or variational derivative) relates a
change in a functional to a change in a function that the
functional depends on.
 Wikipedia, “Functional derivative”

•  Derivative with respect to the gradient!
•  Gradient energy term in phase field (very few functional forms)
•  Bulk free energy (contains the thermodynamics of the system)

–  Simple partial derivative

F = f (r,c,∇c)dV∫
F total free energy
f free energy density

Phase Field Implementation in MOOSE
•  The kernels required to solve the phase field equations have been

implemented in the phase field module
•  In general, a developer will not need to change the kernels but simply

use the kernels that have already been implemented
•  New models are implemented by defining the free energy and mobility

with their derivatives in material objects.

Derivative Function Materials
•  Each MOOSE Material class can provide multiple Material Properties

•  A Derivative Function Material is a MOOSE Material class that provides a well defined
set of Material Properties

–  A function value, stored in the material property F (the f_name of the Material)
–  All derivatives of F up to a given order with respect to the non-linear variables F depends on

•  The derivatives are regular Material Properties with an enforced naming convention

–  Example F, dF/dc, d^2F/dc^2, dF/deta, d^2F/dcdeta …
–  You don’t need to know the property names besides F, unless you want to look at them in the

output!

•  Recap:
Each Derivative Function Material provides one Function together with its derivatives!

•  That function can be a Free Energy Density, a Mobility, or whatever you may need.

Solving the Allen-Cahn Equation
•  After taking the variational derivative, the strong form of the Allen-Cahn

residual equation is

•  Each piece of the weak form of the residual equation has been
implemented in a kernel:

•  Parameters must be defined in a material object
•  The free energy density and its derivatives are defined in a

Derivative Function Material

TimeDerivative ACInterface AllenCahn

R
⌘j =

✓
@⌘

j

@t
,

m

◆
+ (L

j


j

r⌘
j

,r
m

) + L
j

✓
@f

loc

@⌘
j

+
@E

d

@⌘
j

,
m

◆

@⌘j
@t

= �L

✓
@F

@⌘j
+

@Ed

@⌘j
� jr2⌘j

◆

✓
@c

i

@t
,

m

◆
= �(

i

r2c
i

,r · (M
i

r
m

))�
✓
M

i

r
✓
@f

loc

@c
i

+
@E

d

@c
i

◆
,r

m

◆

Solving the Cahn-Hilliard Equation
•  Due to the fourth-order derivative, solving the Cahn-Hilliard equation

can be hard. In MOOSE there are two available approaches
–  Residual:

–  We can put this in weak form:

–  But, solving this residual requires higher order elements

•  Another option is to split the equation into two:

–  The split form can be solved with first-order elements.

✓
@c

i

@t
,

m

◆
=� (M

i

rµ
i

,r
m

)

(µ
i

,
m

) =

✓
@f

loc

@c
i

,
m

◆
+ (

i

rc
i

,r
m

) +

✓
@E

d

@c
i

,
m

◆

Strong Form Weak Form
@c

i

@t
=r · (M

i

rµ
i

)

µ
i

=
@f

loc

@c
i

� 
i

r2c
i

+
@E

d

@c
i

R
ci =

@c
i

@t
�r ·M(c

i

)

✓
r@f

loc

@c
i

+r@E
d

@c
i

◆
+r ·M(c

i

)r
�

i

r2c
i

�

The Direct Solution of the Cahn-Hilliard Equation
•  Each piece of the weak form of the Cahn-Hilliard residual equation has

been implemented in a kernel

•  Parameters must be defined in a material object

•  The free energy density and its derivatives are defined in an energy
material object (e.g. DerivativeParsedMaterial)

•  Mobilities can also depend on non-linear variables M(c) and can be
supplied through Derivative Function Materials

•  Due to the second order derivative, third order Hermite elements must
be used to discretize the variables

R
ci =

✓
@c

i

@t
,

m

◆
+

�

i

r2c
i

,r · (M
i

r
m

)
�
+

✓
M

i

r
✓
@f

loc

@c
i

+
@E

d

@c
i

◆
,r

m

◆

TimeDerivative CHInterface CahnHilliard

The Split Solution of the Cahn-Hilliard Equation
•  The weak form of the split Cahn-Hilliard residual equation has also

been implemented in kernels:

•  Parameters must be defined in a material object

•  The free energy density and its derivatives are defined in an energy
material object (as with the direct solve, making it easy to switch between the two)

•  Residuals are reversed to improve convergence
(CoupledTimeDerivative)

CoupledTimeDerivative SplitCHWRes

SplitCHParsed

Rµi =

✓
@ci
@t

, m

◆
+ (Mirµi,r m)

R
ci = (

i

rc
i

,r
m

) +

✓✓
@f

loc

@c
i

+
@E

d

@c
i

� µ
i

◆
,

m

◆

Cahn-Hilliard Solution
•  We have done a quantitative comparison between the direct and the

split solutions of the Cahn-Hilliard equation.
–  The split with 1st order elements is the most efficient.
–  The direct solution has the least error.

•  However, practically speaking the split is often the best choice, since
our simulations can be computationally expensive.

101 103 105

10−4

10−2

100

Computation time (s)

L 2 e
rro

r

1st O. Lagrange
2nd O. Lagrange
3rd O. Hermite

101 103 105

10−4

10−2

100

Computation time (s)
L 2 e

rro
r

1st O. Lagrange
2nd O. Lagrange
3rd O. Hermite

Newton JFNK

✓
M

i

r
✓
@f

loc

@c
i

+
@E

d

@c
i

◆
,r

m

◆

Simple Phase Field Model Development
•  As stated above, the microstructure evolves to minimize the free energy

•  Thus, the free energy functional is the major piece of the model

•  Phase field model development is modular, with all development focused
around the free energy

31

Free Energy Density Material

fbulk = 1/4*(1 + c)^2*(1 – c)^2
dfbulk/dc = c^3 – c
d^2fbulk/dc^2 = 3*c^2 – 1
d^3fbulk/dc^3 = 6*c

Free energy:

Differential
equations:

Phase field models that are not based on a free energy can be implemented
using normal MOOSE syntax

F =

Z

V

0

@f
loc

(c
i

, ⌘
j

, ..., T) + E
d

+
X

i


i

2
(rc

i

)2 +
X

j


j

2
(r⌘

j

)2

1

A dV

CahnHilliard SplitCHParsed

(
i

rc
i

,r
m

) +

✓✓
@f

loc

@c
i

+
@E

d

@c
i

� µ
i

◆
,

m

◆

Reminder:

∇f (c,η) =∇c ∂f
∂c
+∇η

∂f
∂η

Derivative Function Materials
•  The free energy and its derivatives can be defined in materials classes in four

different ways:
–  The derivatives can be defined directly by the user, by inheriting from
DerivativeFunctionMaterialBase

–  The derivatives can be calculated automatically, with the free energy defined in the
input file using DerivativeParsedMaterial

–  The derivatives can be calculated automatically, with the free energy hard coded in a
material object (ExpressionBuilder)

–  CALPHAD free energies (only for simple models now)

•  A derivative material has an f_name (the function name)

•  Property names of the derivatives are constructed automatically
(using the value of f_name according to fixed rules set in the
DerivativeMaterialPropertyNameInterface class)

•  Add Derivative Function Materials using the DerivativeSumMaterial
(sums function values and derivatives)

fbulk = µ

✓
�4
1

4
� �2

1

2
+

�4
2

4
� �2

2

2
+ ��2

1�
2
2

◆
fbulk = W (1 + c)2 (1� c)2

Automatic Free Energy Differentiation
•  To simplify development even more, you can only enter the free energy

functional and all derivatives are automatically evaluated analytically

[Materials]
 [./FreeEnergy]
 type = DerivativeParsedMaterial
 block = 0
 # name of the free energy function
 f_name = fbulk
 # vector of non-linear variables
 args = ’c’
 # Material properties.
 material_property_names = ’W’
 # Free energy functional
 function = ‘W*(1+c)^2*(1-c)^2’
 [../]
[]

[Materials]
 [./FreeEnergy]
 type = DerivativeParsedMaterial
 block = 0
 # name of the free energy function
 f_name = fbulk
 # vector of non-linear variables
 args = ’gr0 gr1’
 # Material properties.
 material_property_names = ’mu g’
 # Free energy functional
 function = 'mu*(gr0^4/4 - gr0^2/2 +
gr1^4/4 - gr1^2/2 + g*gr0^2*gr1^2)'
 [../]
[]

+ Cahn-Hilliard + Allen-Cahn

Automatic Differentiation
Symbolic differentiation of free energy
expressions

•  Based on FunctionParser
http://warp.povusers.org/FunctionParser/
to allow runtime specification of
mathematical expressions

•  Mathematical expressions
è Tree data structures

•  Recursively apply differentiation
rules starting at the root of the tree

•  Eliminate source of human error
•  Conserve developer time

Performance considerations
•  Aren’t interpreted functions slower than natively compiled functions?

•  Just In Time (JIT) compilation
for FParser functions

•  Parsed functions (automatic
differentiation) now as fast as
hand coded functions

•  Makes the rapid Phase Field
model development more
attractive

•  ~80ms compile time per
function. Results cached.

w
w

w
.in

l.g
ov

Examples and Applications

•  Multiscale investigation of void migration in a temperature gradient
(Soret effect):

•  MD studies identify the
diffusion mechanisms
active in the migration
of nanovoids

•  The migration of larger voids is modeled with MARMOT
with surface and lattice diffusion

Atomistic Mesoscale

From Desai (2009)

MARMOT Example: Void Migration

Void migration
Movie

Zhang et al., Computational Materials Science, 56 (2012) 161-5
37

Particle and Pore Pinning
•  Defects such as pores or precipitates on GBs impede the GB

migration by applying an opposing force.

•  To account for the interaction of GBs with a particle defined by the
variable c, we add a term to the free energy

•  The term is implemented in the kernel ACGBPoly

•  It is activated using the simplified grain growth syntax by adding a
coupled variable c

f(c, ⌘i) =
X

i

✓
⌘4i
4

� ⌘2i
2

◆
+

✓
c4

4
� c2

2

◆
+ aGB

X

i

X

j>i

⌘2i ⌘
2
j + as

X

i

c2⌘2i

[Kernels]
 [./PolycrystalKernel]
 c = c
 [../]
[]

Particle and Pore Pinning
•  We verified this model by simulating an identical system using MD

simulation and the phase field model
–  10 He bubbles (r = 6 nm) in Mo bicrystal (R = 20 nm) at 2700 K.

0 0.5 1 1.5 2 2.5
0

500

1000

1500

2000

2500

Time (ns)

G
ra

in
 v

ol
um

e
(n

m
3)

Phase field
MD

• MARMOT can be used in both hierarchical
and concurrent coupling

Operating
condition

range

Bulk material
properties

Operating
conditions

• Codes are run simultaneously and
information is passed back and forth.

• Captures interaction between the scales
• Can locate important coupled behaviors
• More computationally expensive

Concurrent coupling

Develop model

Coupling to Larger Length-Scales

Hierarchical coupling
• Lower length-scale models are run separately to

construct materials models.
• Macroscale simulations are efficient.

Passing analytical model into BISON

k =
κGBκp

A + BT + CT 2 + Cvcv + Cici + Cgcg

Direct coupling with BISON

k =
κGBκp

A + BT + CT 2 + Cvcv + Cici + Cgcg

Thank you!
•  For more information, please see http://mooseframework.org
•  Github repository: https://github.com/idaholab/moose
•  3 day training workshops at INL and other locations (keep an eye on

the website for dates and locations)
•  Mailing list: to subscribe, send an email to

moose-users+subscribe@googlegroups.com
or see
http://mooseframework.org/getting-started/

