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WHO, -factsheets 2014

In 2015 World Economic Forum named “Water Crisis” as
the most likely and most impactful global economic risk

World Economic Forum, Geneva, Switzerland, “Global risks 2015 10th edition,” 2015.
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70% water consumed in agriculture

Produces wastewater

(¢ Adds contaminants

: http://www.nucleartourist.com




Options to Provide Water
Supply Demand

eUse water more ‘
efficiency —

eReduced population ﬂ

sewage or
agricultural
water
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eDesalination ™
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Growing Water Focus

Water Researchers
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Publishers: Two new journals in 2016:

ROYAL SOCIETY
&CHEMISTRY

an g partner npj ‘ Clean Water

Sources

[1] “Global desalination market set to grow 320.3% by 2020 - driven by RO,” Membrane Technology, vol. 2011, no. 10, pp. 7 —, 2011.

[2] U. E. I. Administration, International Energy Outlook 2016. U.S. Department of Energy, 2015.

[3] The Water and Food Nexus: Trends and Development of the Research Landscape, Stockholm International Water Institute and Elsevier, 2012
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Example:

$72 million/year NSF:
Innovations at the Nexus of
Food, Energy and Water
Systems (INFEWS) (2016)

Environmental Science: Water Research & Technology
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Thermo-nano scientific techniques

for water
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My Research
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Desalination Systems Level

Heat
Driven
! Qin, Tu 1 Permeate (Pure Water)
: SN
: Black Box |
I I
I

Warsinger et al. Entropy 17, 7530-7566 (2015).
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Multistage Vacuum MD
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Membrane Batch
Distillation Reverse

Food Other Food &

Refrigeration

Water
Efficiency Osmosis Projects

Thermal power
with desalination
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Membrane Distillation Advantages
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Membrane Distillation Process

hydrophobic mem
passes vapor but n

vapor
diffusion

saline condensate

feed
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Membrane Distillation Process

Heat input

e

feed stream
preheating

et e
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AGMD Computational Cell

saline feed MD membrane air gap condensate cooling wate

cool saline feed (Preheating)

.

vapor diffusion §

NZ

< g
heat transfer _ & dz
(vapor advectlon)oc

(&)

hot saline feed

Primary trade off:

Flux J = B * AP,upor pressure
J flux [kg/m?s]
B MD membrane permeability m?2s/kg
' Q Heat transfer rate (W]
Qevap
thermal NMp = —= : Subscript Key
efficiency Qevap + Qcond

evap €Vaporation
cond conduction

[21] Warsinger et al., IHTC-15, Paper No. IHTC15-9351, (Kyoto, Japan August 2014).



Jumping droplet condensation

Superhydrophobic CuQ

Video recorded by N. Miljikovic
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Air Gap Membrane Distillation: Flow Regimes

jumping
droplets

Tc,in

3

condensate droplets on falling flooded air gap
film membrane droplets
film jumping dropwise flooded

droplets

David Warsinger, laichander Swaminathan, Laith Maswadeh, and lohn Lienhard V. Superhydrophohbic condenser surfaces for air

gapmembrane distillation. In planned submission to Desalination, October 2014,

2. David Warsinger, laichander Swaminathan, and lohn. Lienhard V. Superhydrophobic condensing surfaces for air gap membrane 20
distillation, October 2014, reference number 16942,



Air-Gap Membrane Distillation
Experimental Setup
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CuO Superhydrophobic Surface
Fabrication

Vapor phase:
(.:I
CF3(CF2)sCHzCH—~Si—Cl
Cl

polished, copper alloy plate ‘
(Alloy 110, 99.9% pure)

Acetone NaClO,, NaOH,
Na;P0O,-12H,0, and
deionized water

Before silane coating
'R
i) \

Ultrasonic bath Cup r!__anost'ructures‘troﬁghn%gﬂ__ 8
f {flurégolyme; 5_9 (hydrosMBBicity)~
Wash: BT N "

% N,
\ deionized water N

ethanol,

7
w4
isopropyl alcohol \ 7 s

- i




CuO Superhydrophobic surface
desired properties
High roughness (hydrophobicity)
Low surface energy coating (hydrophobicity)
Thin self-limiting layer (thermal conductivity)
Materials with high thermal conductivity (CuO)

Robustness for long duration operation

Scalable to large sizes cheaply (via bath
process)



Hydrophobic condensing in MD

Hvdroﬁﬁilli! surface SJp erhy drop‘h
’ ’ p— y 0 - 3
-

1cm

&

Plugflow Visuallized through sapphire condensing surface After operation, membrane removed

complex Small droplets
trapped fluid

Summary of the influence of gap and configuration changes on permeate flux

Spacer Surface Spacer Mesh Thermal .
parameter . . - - - Tilt Angle
Orientation Hydrophobicity Hydrophobicity Conductivity

. horizontal &  Contact angle of = Contact angle of ~0.3 to 400 Module tilt of -
range/details , . . . : . .
diagonal <20° to 164 ~80° to ~150 W/m2K 60° to 85

| Flux Increase | <5% 0-110% -22-2% 21-119% 0-54%
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Improved Condensate Flux

Pure Water Flux [LMH]

Jumping Droplet Condensation in Membrane Distillation
CuO Coated and silanized surfaces
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Saline Feed Temperature [°C]

Energy Improvement over

boiling: GOR [-]
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=

Improved Flux vs
Energy Tradeoff

Mass transfer
coefficient increase

I —2.5x
- 1.8x

O 4 8 12 16 20 24
Pure Water Flux [LMH]
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Implications of hydrophobic
condensing

e [t improves flux substantially, and overall
efficiency (GOR). Are similar gains possible in
other thermal desalination technologies?

e Can other condensing and micro-fluidic
nanotechnologies improve this and others,
including directional wicking?

 How will technologies be designed differently
at the nano and system-level with these
techniques?



Fouling Types in MD

Particulate fouling

I

x1iaan
x11 209 190m

Iron Oxide

Membrane degradation

cracking from intermittent operation

David M. Warsinger, Jaichander Swaminathan, Elena Guillen-Burrieza, Hassan A. Arafat, and John H. Lienhard V.
Scaling and fouling in membrane distillation for desalination applications: A review. Desalination, in press, 2014.
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Polymer thin films deposited using initiated

chemical vapor deposition (iCVD)
iCVD cham_ber

hot filaments “
. . polymerizatic}

<€
00 SR ELY
stage
iCVD polymer film Roll-to-roll iVD system

4 ~ o || F.

Polymer film

\

Silicon

28
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ICVD for hydrophobic membranes

ICVD parameters to optimize

Cl
CF3(CF2)sCH2CH—Si—Cl
Cl

H,C
° *)I\OGHQCHg(CFE}?GFB

1. Chemistry

-Safe?
-Hydrophobicity?
-Stability & performance

lo

2. Thickness and conformality
-Avoids pore blocking

-Avoids gaps in surface coverage

29



Fouling Resistant Nanoengineered Membranes
Superhydrophobicity & Air Layers

Wetting Occurrence
1. Superhydrophobic (157°) 2. Hydrophobic (125°) s MIPASYS S S SRESE
T W <ia " ’ :’/W
p 7 L by . Ry \ {Q{i{
- o{/\ N Salts
% 2 M\ﬁ . - Surfactants
g \w‘i\) $ f\% g0 Micelles
\@ﬁj \’\\\"\\o\ ~ Hydrophobic
R % i\/ﬁ’}°/°/°/° Membrane
o ML
g S \
. K-
%‘\ T ON N

Air
Recharging

Wetting Prevention

EHlet DAY

Top: submerged superhydrophobic MD membrane, visibly shiny
due to the thin air layer on its surface.

Bottom: SEM images of MD membrane surface. PVDF
membrane coated with PFDA via iCVD for superhydrophobicity

b
2

jo
AN

'

=
~ <
W%; g 5}3 Superhydro-
S o LS55 phobic
:,/& Membrane

[6] Warsinger et al. Journal of Membrane Science in June 2015 505, 241-252 (2016).
[19] Warsinger et al. In Proceedings of ACE15, Anaheim, CA, USA, (2015). 9

g
[29] Warsinger et al. ” Provisional Patent Application Submitted, mit-17920pro, 2015 \_5,-,{




Properties of polymeric membranes

Membrane Trade name Polymer Thickness Nominal IPA Air Contact
type (um) pore size | bubble flowrate angle
(um) point (I/min/cm?
@ 0.7 bar

| Flat sheet NS Accurel 2E-PP PP 177 0.2 114.5 1.3 113°

EEE Donaldson  Tetratex 6532 PTFE/PES 130 0.1 200 3 153°



Fouling Resistant Nanoengineered Membranes
Superhydrophobicity & Air Layers

Liquid Entry Pressure (LEP) [bar]

1.2

1.0 +

0.8

0.6

04

0.2

0.0

contact angle

170
150
w130
=110
—90
0.2 0.4 0.6 0.8 1
Air Area Fraction f;
Experiment
E1 (Default 1) PP
E2 PP
E3 PP
E4 (Default 2) PTFE
ES PP
E6 PTFE

Alginate Gel Adhered [mg]

2 Alginate from Operation

H, H, SuperH, SuperH,
none air none air
Test
H = hydrophobic
air vs none = with air layer recharging or not

Maximum SDS
.. Conc. before
rec.harg- Spacer rec.harg- Spacer Wetting
ing Ing
- - - - 0.2
+ + + 0.3
+ = - + 0.3
- 0.4
+ + - + 0.4 32
+ + _ +  0.8< (no wetting)



Fouling Resistant Nanoengineered Membranes
Superhydrophobicity & Air Layers

Concept: providing air at high pressure from the
backside (from pure permeate) to reverse
wetting

TS
W‘ 20 - )
g AZ  DryOut Membrane
> Or Saltremainsin pores Wets Easily
: Q" ° 5 :
Membrane Wetting
Distillation Salty water
penetrates through
membrane

Air Backwashing Functionality
Pressurized air forces Restored
water and salt out of
pores
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Fouling Resistant Nanoengineered Membranes
Superhydrophobicity & Air Layers

Percent Change in Liquid Entry Pressure (LEP)

after breakthrough
Forced air With dryout

o% - . a

-10% - | Pressure
meter

-30% A solution ﬁ

-40% - — R
-50% -

_60% - Salinity

-70% - 0.5 wt DI water
80% m 3.5 wth

-80% -

90% - 20 wt%
-100% -

Warsinger et al. Provisional Patent Application Submitted, mit-18467Kpro (2016).
Warsinger et al. , MTC16, February 1-5, 2015, San Antonio, Texas, February (2016).



Membrane Batch Other Food &

Distillation Reverse Food
Refrigeration Water

Efficiency Osmosis Projects
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Reverse Osmosis (RO)

Pressure

I

Collection Tube

Salt Water 7“0 .l Brine

Feed W
Feed Membrane i ‘ g =y Brine
Feed Water Feed Spacer
RO Membrane
Permeate Spacer
\ Permeate UV Membrane
ST
-\'\(\ «\e(\
\L@Q A c\e
ot Many elements to an

RO membrane module

Brine Fresh
Water

Wiost = fA Papplied—osmotic dv

aquanext Inc. URL: http://www.aquanext-inc.com/en/product/desalination02.html



RO Energy Modeling

_ Viscous
Terminal

Overpressure

/ / pass

mp + AP + NAP,

Wpn —
RO 7,RR
/
Pump
efficiency

Osmotic
pressure

\

Recovery
Ratio

D. M. Warsinger et al., Water Research, vol. 106, pp. 272-282, 2016.

losses each

Pressure (bar)
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What is Batch?

* A set volume of liquid is concentrated

e Pressure varies over time

Standard RO

20 {10
"op
~
<
—_ 24
o >
o 1st cycle 2nd cycle -'é
v T
=] V)
3 , E
o > Batch RO g
©
=
10 20

Time [min]



Feed

Standard RO

RO membrane modules

Pressure energy can be
recovered from brine

Pure
Water

Brine
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Batch RO: High Pressure Tank
Concept

RO module

Pump

Feed, singlefill ssssnmu= > r

Variable
volume
high
pressure

Pure Water

Pros tank Brine

° Efﬁciency Recirculation

Cons = Lol N | seesmmaas >

e Tank is Brine reject

after each cycle

Infeasible?

40



How to make a high pressure
tank Batch Process?

Need: simultaneously set ideal pressure while volume changes
over time, done reversibly!

Idea?
e Motor? Small inefficiencies dominate

: dP
* Springs? No o control

41



Batch RO: High Pressure Tank

Concept
RO module
Pump
Pure Water

Feed, singlefill mssmmmn=

Variable

volume

high

pressure
Pros tank Brine
o Efﬁciency Recirculation
Cons = Lol el s eeeessaas >
e Tankis Brine reject

after each cycle

Infeasible?

42



Analysis details

AV =VRR

A
4 A

ﬂvp/n ﬂvp/n ﬂvp/n :Wp/n AVp/n

v v v | v V,(1-RR )

Volume discretization of membrane module for
batch models.

The module is divided into unequal volumes, and in each step, equal amounts of
permeate are removed from each section and the remaining liquid moves to the
next section.

Whatch.HP =

high pressure permeate pump work

circulation
pump work

brine ejection

. V, /AV, —— [ —
AV ij{ " (mnj + AP . _Ap L 1-RRAP,
Vp’ﬂp NcRRm RR 7,

Which is discretized across the membrane module for
spatial effects, and also calculated over time

16 =

14r End ’

12 b

10

Salinity (g/kg)

O Il
Q

Dimensionless distance

Salinity profiles in the membrane module as recovery
increases during each cycle for the batch process with 3
pptat 75% recovery.

Dimensionless distance (The abscissa) is defined as the fraction of the module
recovery achieved as the fluid traverses the module (equivalently, i/n). Lines are
equally spaced by permeate production; arrows indicate the direction of cycle
progression.



Batch Improvement

% Energy
Groundwater Savings
& Water Reuse 60%
0

Fouling

40%

4 20%

0%

0 10 20 30 40 >eawater
Initial salinity [g/kg]

Percent reduction in energy requirements of batch RO systems

compared to continuous, single-stage RO with pressure recovery.

D. M. Warsinger et al., Water Research, vol. 106, pp. 272-282, 2016.
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* Agricultural water use: more 2
efficient, cheaper, water savings ¥y

 Household disinfection for India
etc. 70% water savings

* Mining Water treatment




Current RO costs

Batch RO costs
(estimate)

Batch Cost Savings

Memb .
embranes, Chart Title
pressure Savmgs
vessels |ntake,
Savings, 0 7% outfaII Pumps high
3% aIon steel
21%
Maintena Pretr(;z:/tment
nce, 5% 0
Labor, 5%
C|V||
18%
Membranes,  Chart Title )
N— Pumps, high
. pressure  savings alloy steel
Replemt, Savings 7% 19%
2% o /T
Savings, Maintena 16% Intake,
3% nce, 4% outfall T
8%
Pretreatmen
v 5%
Labor, 5%
Energy — & Civil
24% \engi}l]éering

18%
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Batch RO in the News

WATER DESALINATION REPORT

The international weekly for desalination and advanced water treatment since 1965

Volume 52, Number 41 31 October 2016

process, this was not an absolute energy minimum for RO
desalination, adding, “Tt may be that better designs can move
us even closer fo the true thermodynamic limit.”

WDR has reviewed two recently accepted Journal papers in
which researchers have evaluated several RO configurations
as they consider various strategies of approaching greater
energy efficiency.
The first paper is entitled “Energy efficiency of batch and
semi-batch reverse osmosis desalination” by MITs David
‘Warsinger. Emily Tow. Kishor Nayar. Laith Maswadeh and
John Lienhard V. The paper was published in Elsevier’s TTarer
Research journal online on 25 September. The second paper
is entitled “Can batch or semi-batch processes save energy
Fort inwin Water Plant nears completion in reverse-osmosis desalination?” by Yale University’s Jay
harduess to less than 1 mg/L as CaCO3, before it undergoes Werber, Akshay D"j":\M' and Menachem H""elﬂjl' Iris
crystallization ina 40 gpm (2.52 L/s) Encon forced circulation scheduled for January 2017 publication in Desalinatian. . . . .
evaporator with mechanical vapor compression (MVC). The semi-batch process referred to in both papers is Batch desallnatlo n CO nflg u ratlo n beStS Stan dard
Initially. the RO permeate and evaporator distillate are Desalitech’s Closed Circuit Desalination (CCD) process,

returned to the head of the plant; however, upon California which recirculates pressurized concentrate until a desired reve rse OS mOS I S ap prOaCh

Department of Public Health approval, both flows will be 1¢0VeLy level is achieved. The concentrate is then displaced

blended with the EDR product water. ?“‘;"’* ’!’*‘“‘\""‘;‘l“ﬁ“ feedwater without interupting the Researchers develop a new way to create more clean water with less energy, thanks
eed or permeate flows. L.
to clever timing.

The non-recoverable portion of the RO concentrate, spent

: Both papers also analyzed pressure exchanger batch ROs,
regenerant, crystallizer blowdown, lime sludge and CIP par vzed 1 *

agreeing that barch processes may be “the least energy

wastes are discharged to the eight active, and one standby, " N - N .
colar evaporation ponds. The ponds have an average water  POSSIDIe RO processes.” while acknowledging that sealable, School of Engineering
depth of 16 inches (4lem) and a combined surface area eneigy-efficient batch systems have not yet been developed. November 18, 2016 ELATED

of 6.74 acres (2.7ha). It is anticipated that a pond will be Although the Yale authors consider a variable volume tank

N . N . . to be “relatively i 1", they believe it to ) "
removed fiom service once every eight yeas for cleaning, SR B ERRE IPRCEER - (b With waler scarcity affecting nearly 2 billon peaple — many of whom live near the oceans Paper: "Eneray eficlency of balch and
. an energ :
with the solids banlcd to u Iaudfill for disposal. s “waler, waler everywhere and nol a drop to drink” has become a common cry for more than ~ Semrbatch (CCRO) reverse osmosis
N N T desalination”

just wayward sailors, Desalination through reverse esmosis (RO) has long offered ane solution
to help meet global water needs in the face of population growth, development, and climate

change. However, removing salt Irom water is energy-intensive. Rohsenow Kendall Heat Transter Lab

A team of MIT researchers has responded by crealing new desians for reverse osmosis

AMERICAN WATER
suvvt 206 TECH IDOL

CATALYZING COLLABORATION

BIOGRAPHY ‘
Dr. David Warsinger completed his B.S. and M Eng at Gomell, and his PhD in Mechanical Engineering at MIT: he
completed his graduate studies in a combined 3 years. David's research focuses on the water-energy nexus, with T emesir ST A DR
ches from and nanoeng Gurrenitly, David is & PostDoc &l MIT and beginning a joint Certificate of KAIA AWARD
PostDoc at Harvard. Prior to starting his PhD, David worked a the enginesing consuiting firm Arup, where he ) 4
perlormed energy and sustainabilty analysis and designed heating and cooling systems. David is a coauthor of 22 “"“";:;';:";;’;;;’“ E'L( 9; “E't[']?:;;:lz%esa"m'
DAV, J \ " kshop %

published and 6 submitted journal or conference papers, and a co-inventor on 13 fled or awarded patents. He is

ais0 involved with entrepreneurial endeavers, including demonstrating balch reverse osmosis with MIT Startup

Sandymount, and cofounding Coolity, a startup providing coid storage for farmers in developing sconomies. Notable
awards David has eamed include the national dissertation award from UCOWR, the highest GPA award for his
masters, and the MIT Institute Award for Best Research Mentor for Undsrgraduate Students.

DAVID WARSINGER

Researcher, Lienhard Research
Group, MIT




Commercialization Strategy

Simulations
proving concept
(complete)

Optimization &
analysis for
industry

Co-design

Water
Partners

GRADIANT

‘Water to Drive Energy

Sandymount Technologies

(Young company) (Startup) (World Leader)
Industrial wastewater Beverage Large-scale water

Commercialization and additional funding implementation plan of batch desalination
research
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Can we get big benefits too from improving
not just the process, but its nanomaterials?

Pump

-
pressure
tank

Brine
Recirculation

.......... >
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Ultrapermeable RO Membranes:
Graphene Oxide (GO)

Reduces membrane area (Sv)

Energy savings: less overpressure

Potentially fouling resistant

Emerging contaminants (PFOA)

GO Oxidation

O/C

OXIDATION

GO Membrane Fabrication
UNTREATED GOAL TREATED GOAL

— e ——  ——— —

e —— ——— —

— —

Quantitative
10
B XRD 8
M FTIR Throughput/Time/
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Hidden Hunger refers to a lack or loss of dietary
quality that leaves individuals or populations with
deficiencies in essential micronutrients which
negatively impact on health, cognition, function,
survival, and economic potential

Severity of Hidden Hunger

..
Maderate Savers

Mo dat e Extramaly severo

Severity of Hidden Hunger was determined based on the
proportion of under-fives affected by anemia, vitamin A
deficiency. stunting as an indicator of zinc deficiency and
schoal-aged childran atfected by goiter.

UNICEF State of the Warld's Chilaren 2009, WHO Giobal datatiase on vitamin A
Geticisncy and enemis. ot deficiency

Visualizing Water Stress

Worldwide, approximately 2 billion people

Global

are affected by Hidden Hunger
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Phase-change thermal storage
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Feed Modeling

N (f/8) - (Re — 1000) - Pr Main Flux eqn
u =

L+ 12.7- (f/8)1}2 . (PTEK3 — 1) Ji =B - (Pf,m,z' — Pp . -Ta,m,’i)
Scy = b Concentration along flow direction
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Air Gap & Condensate

Diffusion Equation
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Cooling Channel Modeling

w - dcond
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Efficiency Definitions

Parameter Typical Value Definitions
J  Flux 2-10 L/m2hr

m pure water flux (., measured in L/m2-hr).
F_I : I)

) Where 7, is the mass flow rate of feed,
vy

A 1s the area.

GOR Energy Efficiency 1.5-15

my h fo h¢y is the enthalpy of vaporization (2257 kJ/kg
GOR = plfe S
(2 ()¢ is the total heat energy input.
- _t‘
N MD Thermal Efficiency .5-.93
.?]. — — 62‘\-’2-11). Heat transfer by conduction across the membrane {(?:.“”d}
Cgva.p + (2 cond
NTU Dimensionless size 4-35 NTU. or number of transfer units
NTU — UA U is the overall heat transfer coefficient
-5 Ch cp 1s the specific heat.

£ Heat transfer effectiveness 0.3-0.95

1 1

h—-'c.out — h’c.in lc.out — lc.ill

—
s

h—’f.in — h-’c.in 1 f.in — lc.ill



Model Validation
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Figure 4: Validation of the 1-D Numerical Model with experimental data from [32]
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GOR vs Flux
High salinity

—Conductive Gap
—Air Gap

0 | | 1
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Figure 7: A comparison of GOR and Flux for AGMD and CGMD, s; = 250 g/kg 8
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Impact of salinity
AGMD

18

11 I 100 g/kg

150 g/kg
200 g/kg
—250 g/kg

10 |

GOR [-]

S o = O\ OO

0 5 10 15
Flux [LMH]

Figure 8 AGMD. The GOR-flux curves at high salinity exhibit decreasing GOR and flux at large svstem size (L > L*) or

correspondingly JJ < Jx. The J* value increases as sy increases, but is not as easy to see.



Dimensionless framework
20

salinity [g/kg]
CGMD AGMD

20

Figure 12: GOR as a function of NTU from the discretized and simplified HX model of MD. Dotted lines are results from the
HX model, and show that the HX model is also capable of capturing the NTU* beyond which flux begins to decline. Just like
Jx increases at high salinity, the critical system size (or NTU®) decreases with feed salinity. Shorter module lengths have to be

used when treating high salinity water with MD. The * indicates optimal system size to maximize GOR
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Maximum Performance

30
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Figure 16: Max GOR possible by using the ideal membrane thickness at each salinity and flux for CGMD
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