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• Coherence and interference in nonlinear and quantum optics; 

• Metamaterials and backward light; 

• Extraordinary coherent nonlinear optics with backward light. 



Coherent Control 

P(t) =  χ  L  E p  (t) +  χ (3)   | E(t) |   2  E p (t)   
  



Interference of Quantum Pathways 
Coherent Quantum Control: 

Laser Induced Resonances in the 
Absorption and Refraction Indices, 

Amplification without Inversion 



Laser-induced Fano Resonance -  
Laser Induced Continuum Structures 

Fano Resonance 

Similar Applications to Metamaterial Engineering and Nanophotonics. 

Laser-induced Fano Resonance -  
Lase-induced Continuum Structures (LICS) 



Propagation of Light: Phase Velocity, Refractive Index 
and Poynting Vector  

      
 

Silicon, 1200 – 8500 nm, n=3.42–3.48;  
Germanium, 3000 – 16000 nm, n=4.05–4.01 

Phase and  
wave front  
control 

Energy Flux 



Nonlinear Optics (Nonlinear Photonics) 

P (t, z) = PL(t, z) + PNL(t, z); 

PL(t, z) = χ(L) E(t,z) ; PNL(t, z) = χ(2) E2(t,z) + χ(3) E3(t,z)  + …; 

E(t,z) =  Σj E0j cos (ωjt-kjz) ;  

P(2)(t,z) =  Σi,j χ(2)
 Eoi Eoj cos (ωit-kiz) cos (ωjt-kjz);  

P(3)(t,z) = Σi,jl χ(3)
 Eoi Eoj Eol cos (ωit-kiz) cos (ωjt-kjz) cos (ωlt-klz).  

 

 

Second order, quadratic nonlinearity – SHG, three-wave mixing: 

• χ(2) →  cos(x)2 = (1/2)[1+cos2x] →  2ωi , 

• χ(2) →  cos(x)cos(y) = (1/2)[cos(x+y)+cos(x-y)] →   

 ωi + ωj = ωl ,  ωl - ωj = ωi ; 

Third order, cubic nonlinearity -  THG, four-wave mixing:     

• χ(3) →  

• χ(3) → ωs = ωi  ωj  ωl ,  ωi + ωj = ωl + ωs,  

cos3x = ¼ (3cos x + cos 3x) → ωi , 3ωi , 

 

 



Medium Polarization – Linear and Nonlinear 

E(t,z) =  E0 exp (ωt-kz);  
P(t,z) = Nd(t,z)=PL(t, z)  + PNL(t, z) ; PL(t, z) = χ(L) E(t,z); 
PNL(t, z) = χ(2) E2(t,z) + χ(3) E3(t,z)  + …; 

P(2)(t,z) =  χ(2)
 Eo

2exp [2ωt-2k(ω)z] →  

E2(t,z) =  E0 exp [2ωt-k(2ω)z];  
Phase matching: ∆k = 2k(ω) - k(2ω) = 0 → n(ω) = n(2ω).  

E(t,z) = E3 exp (ω3t-k3z) + E2 exp (ω2t-k2z);   
ω1=ω3-ω2;  ℏω3 →ℏω2+ ℏω1 : OPA and DFG 
Phase matching: k3-k2=k1; ∆k= k3-k2-k1; Lcoh~ π/∆k. 

  



Second Harmonic 
Generation 

Phase Matching 

Phase dependent (coherent) NLO effects. 

, 



Forward and Backward Waves 



PIM, FW NIM, BW 

PIM, FW 

NIM, BW 

E

H
k

E

k
H

θ i

θt

ε>0
µ>0

E

H
k

E

k

H

θ i

θt

ε<0
µ<0

Backward EM waves: striking  changes in linear and nonlinear optics 

W. Cai and V. Shalaev, Optical Metamaterials: Fundamentals and Applications, Springer, 2009;   
https://engineering.purdue.edu/~shalaev/ 

Nanoscopic LC ciruits 

Negative Refraction: 

c
nk ω

=

µ < 0,  ε<0; n=-(εµ)1/2  

V. Veselago   J. Pendry   D. Smith   V. Shalaev 

https://engineering.purdue.edu/%7Eshalaev/Publication_list_files/Cai_Shalaev_Springer_book.pdf


SHG: CW REGIME 

SHG in a Backward Wave  Medium  

Frequency-doubling    
NLO  metamirror 

Popov, Slabko, Shalaev, Laser Phys. Lett. 3, 293-296 (2006). 
Popov, Shalaev,  Appl. Phys. B Lasers Opt. 84, 131- 137 (2006). 

Shadrivov,  Zharov, Kivshar, JOSA  B23, 529-534  (2006).   
Kudyshev, Gabitov, Maimistov, PRA 87, 063840 (2013). 

SHG in Ordinary Medium  

  



Contra-propagating SH Inside the 
Travelling Pulse of Fundamental 

Radiation 

      
 



Extraordinary Three-wave Mixing  

123 ωωω =−3 1 2ω ω ω− =

g ∝ χ(2)E3 

ω1- signal ω2 - idler 

213 ωωω  +=

S1,2 ∝ exp(gz) 

Entangled Photons 

321 kkk


=+

213 kkk


=− 123 kkk


=−

S1,2 ∝ 1/cos2(gL) 

gL → π/2 – extraordinary resonance, mirrorless OP oscillation threshold, 
huge enhancement in parametric amplification and  frequency-shifted NLO reflectivity, 

propagation direction control, contra-propagating entangle photons. 

Ordinary 
waves Backward 

wave 

Extraordinary transient processes in the pulsed regimes. 

Popov, Shalaev, Appl. Phys. B. 84, 131–137 (2006).  
Popov, Shalaev, Opt.Lett. 31, 2169–2171 (2006); 

z = 0, 

Extraordinary applications. Key requirements: BW and FWs, phase matching.  



Remotely interrogated nonlinear-optical 
sensors  

k1+k2=k3 

(b) – BW amplifier,  (b) and  (c) – NLO frequency-converting  meta mirrors  (NLO sensors) 

 χ(2)
 

Popov, Myslivets , Proc. SPIE 9157, 91573B (2014) 
 



NIMs 

W. Cai and V. Shalaev, Optical Metamaterials: Fundamentals and 
Applications, Springer, 2009;   

https://engineering.purdue.edu/~shalaev/ 

Nanoscopic LC ciruits of different geometries. 

https://engineering.purdue.edu/%7Eshalaev/Publication_list_files/Cai_Shalaev_Springer_book.pdf
https://engineering.purdue.edu/%7Eshalaev/Publication_list_files/Cai_Shalaev_Springer_book.pdf


Different Approach: 
Negative SPATIAL Dispersion 

μ < 0? 
 



S = vgU, vg = gradkω(k),  
vg = (k/k)[∂ω(k)/∂k] , 
∂ω(k)/∂k<0, vg↑↓k  

Negative Spatial Dispersion and 
Backward Waves 

V.M. Agranovich, et al, PRB  (2004),  Phys. Usp (2006). 



Spatial Dispersion and Group Velocity 

• Free space: ω = kc → ∂ω(k)/∂k = c > 0; 

• Bulk dielectric: ω = kvph → ∂ω(k)/∂k = vph > 0;  

• Wave guides: spatially dispersive; 

• Optical phonons: 

 

(ν ≈ 36.36 THz), Diamond:  

Acoustic phonons exhibit a linear relationship 
between frequency and phonon wave-vector for long 
wavelengths. The frequencies of acoustic phonons 
tend to zero with longer wavelength. 

Optical phonons have a non-zero frequency at the 
Brillouin zone center and show no dispersion near 
that long wavelength limit.  

 

Calcite CaCo3: 

M. I. Shalaev,  V.V. Slabko,  S.A. Myslivets,  A.K. Popov, OL 36,  3861 (2011); Appl. Phys. A 115, 523-529 (2014) . 



Nanoforest for Extraordinary 
Backward-wave  Nonlinear Optical 

Processes: SHG and TWM  

Proof-of-principle Model of the Tailorable Spatial Dispersion and 

of the MM which Supports the Co-existence of Guided  Ordinary 

and Backward EM Waves with Adjustable Frequencies and  

Phase and Group Velocities. Phase Matching of Contra-

propagating  Guided Waves. Greatly Enhanced NLO Generation in 

the Reflection Direction and Parametric Amplification.  



Electromagnetic Properties of Carbon Nanotubes 
and Dispersion Properties of the Carbon Nanoforest 

Slepyan,  Maksimenko, Lakhtakia, Yevtushenko,  
Gusakov, PRB 60, 17136 (1999); 
Lindell, Tretyakov, Nikoskinen, Ilvonen, Microw.  
Opt. Tech. Lett. 31, 129{133 (2001); 

Surface conductivity (zigzag CNT): 

Surface impedance per unit length: 

UNBOUNDED  Uniaxial MM:  

Nefedov, PRB 82, 155423 (2010);  
Nefedov, Tretyakov, PRB 84, 113410 (2011); 
Popov, M.I. Shalaev, Myslivets, Slabko,  
Nefedov,  Appl. Phys. A 109, 835{840 (2012), 
Narimanov, PRX 4, 041014 (2014). 
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All TM modes are backward waves. 



Guided TM Waves 
TM waves 

A. K. Popov, I. S. Nefedov, S. A. Myslivets,  Hyperbolic carbon nanoforest for phase matching of ordinary 
and backward electromagnetic waves: second harmonic generation, ACS Photonics (April, 2017),  
DOI: 10.1021/acsphotonics.7b00146. 

Popov, et.al.,  Appl. Phys. A 109, 835 (2012), 
http://arxiv.org/abs/1602.02497. 

Tampered waveguide  
formed by two conducting plates: 

k(kx) Dispersion Equation 

, 



Carbon Nanoforest as a Double Domain  
Ordinary/BW  Metamaterial:  

Phase Matching for SHG 

r = 0.82 nm , d = 15 nm, h = 1.05 μm. (h=0.85 μm – the dashed lines) 

f1 ≈ 26.12 THz, fSH ≈ 52.24 THz (λ1fsp ≈ 12 μm, λ1MM ≈ 8 μm). 

vg = (k/k)[∂ω/∂k].  

c/vph  = kx’/kvac = nph 

Two EM eigenmodes  (EMWs travelling 
through the nanoforest). Upper:  vg<0, lower: 
vg>0 at nph=1.5 where phase matching occurs. 

Attenuation 



Phase matching of two backward 
and one ordinary waves: ω1=ω3-ω2 

Attenuation 



EM Properties of Guided Modes, 
Numerical Model:  
h = 3.5 μm, TWM 

La : x10 attenuation 



BWSHG: Master Equations  

d = L/l ≈ 1/15 

, 



BWSHG vs SHG:  
Pulse Energy Conversion 

BWSHG SHG 

Contra-propagating pulses, self-optimization, 
reduced losses, tailorable pulse shapes  

Longer slab → 

Stronger pum
p →

 



BWTWM: Master Equations and  
Multi-parameter  Dependences 

Continuous wave seeding signal: 



BWOPA and NLO Reflectivity vs OPA 

S1,2 ∝ exp(gz) S1,2 ∝ 1/cos2(gL) 

z = 0, contra-propagating entangled photons 

g ∝ χ(2)E3 

BWTWM: resonance gL→π/2 TWM 

, 

(a) and (b): L/l ≈ 1/6; (c) and (d): ∆τ  = (10/6) ps. 
Effects of the group velocity dispersion and transients. 

, 



Extraordinary Transient Processes in TWM: 
Pulse Delay and Pulse Shape Changes 

S1,2 ∝ 1/cos2(gL) g ∝ χ(2)E3 z = 0,  gL → π/2 

V. V. Slabko, A. K. Popov, V. A. Tkachenko, and S. A. Myslivets, Opt. Lett. 41, 3976--3979 (2016). 



 
Conclusions 

 • The possibility is shown to engineer the metamaterials that enable the co-existence of a 
spectrum of the optical surface wave-guided electromagnetic waves with different 
frequencies which propagate in the opposite directions while having equal and co- directed 
phase velocities. Phase-matching is the requirement of a paramount importance in 
coherent nonlinear optics. 
 

• Backward-wave second harmonic generation and three-wave mixing of ordinary and 
backward electromagnetic waves in a pulsed regime is investigated in such metamaterials. 
It is shown that the opposite direction of the phase velocity and the energy flux in the 
backward waves gives rise to extraordinary transient processes in the greatly enhanced 
optical parametric amplification and frequency up and down shifting nonlinear 
reflectivity. 
 

• It is shown that properties of second harmonic generation and three-wave mixingin 
ordinary and backward-wave settings are fundamentally different. In the latter case, 
metaslab serves as microscopic frequency-shifting nonlinear-optical mirror which 
properties can be all-optically controlled. 
 

• The width and shape of the transmitted fundamental, generated and amplified  pulses 
depend on the ratio of pulse length to the metaslab thickness and can be controlled by 
changing intensity and width of the input pulses. 

 
• Applications in photonics such as novel concepts for creation of ultra-compact, chip-

compatible photonic devices with unparalleled capabilities are discussed. 
 



Proof-of-principle Model was developed, investigations and numerical 
simulations were carried out of the MM which supports the co-existance 
and the tailorable dispersion of guided backward and forward EM Modes 
with adjustable phase and group velocities. The investigations proved 
the possibilities of realization of extraordinary coherent NLO 
propagation processes and engineering of ultraminiature photonic devices 
with unparalleled operation properties.    

Guler, U. ; Zemlyanov, D.; Kim, J.; Wang, Z.; Chandrasekar, R.; Meng, X.; Stach, E.; Kildishev, A. V.; Shalaev, 
V. M.; Boltasseva, A. Plasmonics: Plasmonic Titanium Nitride Nanostructures via Nitridation 
of Nanopatterned Titanium Dioxide. Adv. Opt. Mater. 2017, 5, 1600717. 

• Metamaterials made of low–loss transparent conducting ceramics;  
• Different shape of  the nanostructures, different host and boundary dielectric 

and nonlinear materials, dynamic control of the dispersion; 
• NLO coupling of the TE and TM modes; 
• Operation properties of the corresponding photonic devices, such as photon 

sources, amplifiers, frequency and propagation direction convertors, 
modulation and pulse shape control.   
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