

RadCool: a Web-enabled Simulation Tool for Radiative Cooling Yu-wen Lin¹, Evan L Schlenker², Zhiguang Zhou², Peter Bermel² ¹Georgia Institute of Technology, School of Electrical and Computer Engineering, ²Purdue University, School of Electrical and Computer Engineering

Georgia Tech

This work is funded by the National Science Foundation, Network for Computational Nanotechnology Cyberplatform, Award EEC-1227110. Any opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Analysis

- RMS value: 0.2552 K
- Below-ambient cooling
- Total decrease in temperature from ambient is ~10K
- Discrepancy may be due to using average convection coefficient

Tool can be found at https://nanohub.org/tools/radcool/ RadCool successfully models radiative cooling system in a

Approach for Solar Cell Cooling," ACS Photonics, vol. 4, pp. 774-782, 2017.

