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MIT-VS GFET (Rakheja, MIT) 

Compact device models do not exist by themselves but as part of a system 
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2D materials or Layered materials 

 

 

 
 

• Atomically thin, no surface dangling bond 

 

 

 

 

 

 

• Semiconducting(MoS2), Semimetallic (graphene), Insulating(BN) 
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2D Materials to Systems (Today) 

Graphene 

Materials Devices Systems 

MoS2  
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S2DS: Physics-Based Compact Model 
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https://nanohub.org/publications/18  
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S. V. Suryavanshi and E. Pop, J. Applied Phys. 120, 224503 (2016) 

S2DS 

Calibration 
(nominal values) 
and device design 

https://nanohub.org/publications/18
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• S2DS, key highlights: 
a) Emphasis on agreement with experimental data 
b) Simulate sub-100 nm channel lengths  
c) 2D channel and quantum capacitance  
d) Mobility: temperature, field, traps and doping 
e) Self-heating considering anisotropy 
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S2DS: Physics-Based Compact Model 
S. V. Suryavanshi and E. Pop, J. Applied Phys. 120, 224503 (2016) 

[1] Kirby Smithe and Eric Pop, unpublished  
[2] A. Sanne et al., Nano Letters, 15, 5038-5045 (2015) 
[3] H. Fang et al., Nano Letters, 12, 3788-3792 (2012) 
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2D for Sub-10 nm: Challenges   
S. V. Suryavanshi and E. Pop (in preparation) 

• Importance of scaled devices 
• Physical understanding helps to 

develop better models and guide 
experimental efforts  
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C. English, E. Pop, et al. IEDM (2016) 
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Self-Heating – Experiment & Models 
S. V. Suryavanshi and E. Pop, J. Appl. Phys. 120, 224503 (2016) 
E. Yalon, …, S.V. Suryavanshi, E. Pop et al., Nano. Lett., 2017  
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(50x higher than Si-
SiO2 TBR) 

• Raman thermometry verifies our thermal 
models 

• MoS2-SiO2 thermal boundary resistance 
(TBR) accounts for 30% of RTH 

• Perfect heat sinking could boost ID > 20% 
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Self-Heating – Reducing TBR 
S. V. Suryavanshi, E. Pop et al., IEEE Nano, 2017 

MoS2

SiO2

~ 5.7 nm

~ 
5.

7 
nm

~ 
0.

61
5

nm

0 10 20 30 40
0

2

 

P
D

O
S

 (A
rb

. U
ni

ts
) 

Frequency (THz) 

SiO2 

MoS2 • χ is the interaction strength between 
MoS2 and SiO2 

• Increasing χ or making the interface 
cleaner could decrease the TBR 

Molecular Dynamic (MD) Simulations 

T (K) 
TB

R
 (x

 1
0-

8  K
m

2 W
-1

) 

χ = 1 

χ = 2 

χ = 4 

Exp. range 



11 

Contact Resistance – Crowding 
S. V. Suryavanshi and E. Pop (in preparation)  

 Current crowding can be reduced by contact patterning 

Side edge 
conduction (RSE) Front edge 

conduction (RFE)

LFinWFin

LHole

dHole

> 80 % reduction > 30 % reduction 
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S. V. Suryavanshi and E. Pop (in preparation) 
C. McClellan, …, S.V. Suryavanshi, E. Pop, DRC, 2017  

Contact Resistance – Intrinsic Limit 
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• Landauer model (J. Maassen et al., APL, 2013) 

• Assumptions: 
• Single parabolic band structure 
• T = 0 K  

 Large carrier density increases the number of modes  
 Doping reduces the transmission 
 Making cleaner interface (C. English, E. Pop et al., Nano Lett., 2016)  
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Device Optimization, Design and 
Benchmarking 
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S2DS includes analytical 
forms for fringe capacitances 
and external resistances 

S. V. Suryavanshi and E. Pop, J. Applied Phys. 120, 224503 (2016) 
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Large-Area MoS2 Grown by CVD 
K.K.H. Smithe, C. D. English, S. V. Suryavanshi, and E. Pop, 2D Mater. 4 0110009 (2017). 
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make MoS2 
great again 
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Scaling Up MoS2 - 100s of devices  

Over 300 1L MoS2 FETs

25/25 nm Ag/Au contacts
30 nm SiO2 back-gate

Lengths from 3 – 20 µm
Widths from 5 – 20 µm
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K.K.H. Smithe, S. V. Suryavanshi, E. Pop et al., in review, 2017 
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Modeling Variability in 2D Nanofabrics 
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Variability in 2D Nanofunctions 
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• Monte Carlo simulations to assess the effective variability in nanofunctions 
• Can be extended to any circuits and systems 

K.K.H. Smithe, S. V. Suryavanshi, E. Pop et al., in review, 2017 
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Variability in 2D Nanofunctions 
K.K.H. Smithe, S. V. Suryavanshi, E. Pop et al., in review, 2017 

• Bi-layer islands do not cause significant variation for n-type devices 
• We can do similar Monte Carlo calculations for nanofunction energy 
• Future work: how does variation affect the EDP in large circuits? 
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Variability in 2D Nanofabrics 
K.K.H. Smithe, S. V. Suryavanshi, E. Pop et al., in review, 2017 
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2D Materials to Systems (Today) 

Graphene 

Materials Devices Systems 

MoS2  
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Graphene - Introduction 
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• Poor current saturation 
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Graphene Dot Product Nanofunction 
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+ Fast 
+ Smaller area 
+ Low noise 
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+ High accuracy 
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Idea: Simulation with MIT-VS 
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• Dot product nanofunction used for image processing, neural networks… 
• Takes advantage of native graphene properties (high µ, flexible…) 
• Tolerates graphene drawbacks (low ION/IOFF ratio) 

N. Wang, S. Gonugondla, I. Nahlus, N. Shanbhag, E. Pop, VLSI Symp. (2016) 
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GDOT Implementation 

GDOT 
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GDOT • Wafer-scale 
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• Advances in 
heterogeneous 
integration 

• “Average” devices 
but unique function 
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GDOT Prototype 

2-in GDOT Output 

N. Wang, S. Gonugondla, I. Nahlus, N. Shanbhag, E. Pop, VLSI Symp. (2016) 
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2D Materials to Systems (Today) 

Graphene 

Materials Devices Systems 

M. Aly et al., "Energy-Efficient  
Abundant-Data Computing:  
The N3XT 1,000X,"  
IEEE Computer 48, 24 (2015) 

MoS2 MoS2 
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Conclusion 

• Developed S2DS containing accurate models for 
– Carrier transport (vsat, μ, Cq) and contacts 
– Thermal resistance 
– Non-idealities including traps, doping etc. 
– Analytical model of all possible fringe capacitances in a 2D FET 

 

• Used compact models to identify the technology 
challenges   
 

• Used compact models to design and optimize 
nanofunctions 
 

• Showcased capability to design and fabricate large-
scale systems from 2D materials (graphene and MoS2) 
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Thank You! 
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